On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg 2 of griz imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while "blind" to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat ΛCDM and wCDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for ΛCDM) or 7 (for wCDM) cosmological parameters including the neutrino mass density and including the 457 × 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions, and from their combination obtain S8 ≡ σ8(Ωm/0.3) 0.5 = 0.773 +0.026 −0.020 and Ωm = 0.267 +0.030 −0.017 for ΛCDM; for wCDM, we find S8 = 0.782 +0.036 −0.024 , Ωm = 0.284 +0.033 −0.030 , and w = −0.82 +0.
The Sloan Extension for Galactic Understanding and Exploration (SEGUE) Survey obtained ≈240,000 moderateresolution (R ∼ 1800) spectra from 3900 Å to 9000 Å of fainter Milky Way stars (14.0 < g < 20.3) of a wide variety of spectral types, both main-sequence and evolved objects, with the goal of studying the kinematics and populations of our Galaxy and its halo. The spectra are clustered in 212 regions spaced over three quarters of the sky. Radial velocity accuracies for stars are σ (RV) ∼ 4 km s −1 at g < 18, degrading to σ (RV) ∼ 15 km s −1 at g ∼ 20. For stars with signal-to-noise ratio >10 per resolution element, stellar atmospheric parameters are 4377 4378 YANNY ET AL.Vol. 137 estimated, including metallicity, surface gravity, and effective temperature. SEGUE obtained 3500 deg 2 of additional ugriz imaging (primarily at low Galactic latitudes) providing precise multicolor photometry (σ (g, r, i) ∼ 2%), (σ (u, z) ∼ 3%) and astrometry (≈0 .1) for spectroscopic target selection. The stellar spectra, imaging data, and derived parameter catalogs for this survey are publicly available as part of Sloan Digital Sky Survey Data Release 7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.