The segmental organization of the hindlimb locomotor pattern generators and the coordination of rhythmic motor activity were studied in isolated spinal cords of the neonatal rat. All lumbar segments and many thoracic and sacral segments of the cord exhibited an alternating left-right rhythm in the presence of serotonin (5-HT) and N-methyl-D-aspartate (NDMA). Other thoracic segments exhibited a synchronized left-right rhythm or an irregular bursting activity. Transection of the cord at the thoracolumbar or lumbosacral junction abolished the rhythmicity of nonlumbar segments and had no affect on the rhythmicity of lumbar segments. A fast alternating rhythm persisted in rostral lumbar segments after transection of the cord at mid-L3. A much slower alternating rhythm was found in the detached caudal lumbar segments after elevation of the NMDA concentration. These findings suggest that neurogenesis of hindlimb locomotion is not restricted to L1/L2, and that the lumbar pattern generators exhibited rostrocaudal specialization. An alternating left-right rhythm persisted in lumbar cords of midsagittally split preparations that were kept with either L1, L2, L3, or L4 as the only bilaterally intact segment. An alternating rhythm persisted also in preparations that were midsagittally split up to T13-T12, or down to L4. Extension of these lesions led to a bilaterally synchronous rhythm or to left-right independent rhythms in the lumbar cord. These results indicated that the transverse coupling system in the caudal-thoracic and lumbar segments in specialized and that left-right alternation in the lumbar cord can be carried out by the cross connectivity, which is relayed at least through the T12-L4 segments. Bath application of the glycine receptor antagonist strychnine, or the gamma-aminobutyric acid-A (GABAA) receptor blocker bicuculline, induced in the presence of NMDA and 5-HT a bilaterally synchronous rhythm in any intact or detached segment of the cord and in midsagittally split preparations with few bilaterally intact upper thoracic or lower sacral segments. A strychnine-resistant left-right alternating rhythm was found in the presence of 5-HT and NMDA in preparations that were treated with the non-NMDA receptor blocker 6-cyano-7-nitroquinoxaline (CNQX) before and during the application of strychnine. Subsequent washout of CNQX immediately induced a bilateral synchronous rhythm. These results suggest that the phase relation between the hemicords during the rhythm is determined by a dynamic interplay between the excitatory and inhibitory cross connectivity, and that this interplay can be modulated experimentally. Local application of strychnine to L2 kept bilaterally intact in midsagittally split preparations perturbed but did not completely block the alternating pattern of the rhythm induced by 5-HT and NMDA. Local application of bicuculline under the same conditions prolonged the cycle time and had no effect on left-right alternation. These results, together with those described above, suggest that left-right alternatio...
The ability of mammalian spinal cords to generate rhythmic motor behavior in nonlimb moving segments was examined in isolated spinal cords of neonatal rats. Stimulation of sacrocaudal afferents (SCA) induced alternating left-right bursts in lumbosacral efferents and in tail muscles. On each side of the tail, flexors, extensors, and abductors were coactive during each cycle of activity. This rhythm originated mainly in the sacrocaudal region because it persisted in sacrocaudal segments after surgical removal of the thoracolumbar cord. Sacrocaudal commissural pathways were sufficient to maintain the left-right alternation of lumbar efferent bursts, because their timing was unaltered after a complete thoracolumbar hemisection. The lumbar rhythm originated in part from sacrocaudal activity ascending in lateral and ventrolateral funiculi, because efferent bursts in rostral lumbar segments were nearly abolished on a particular side by lesions of the lateral quadrant of the cord at the L(4)-L(5) junction. Intracellular recordings from S(2)-S(3) motoneurons, obtained during the rhythm, revealed the presence of phasic oscillations of membrane potential superimposed on a tonic depolarization. Bursts of spikes occurred on the depolarizing phases of the oscillation. Between these bursts the membrane input conductance increased, and hyperpolarizing drive potentials were revealed. The inhibitory drive and the decreased input resistance coincided with contralateral efferent bursts, suggesting that crossed pathways controlled it. Our studies indicate that pattern generators are not restricted to limb-moving spinal segments and suggest that regional specializations of pattern-generating circuitry and their associated interneurons are responsible for the different motor patterns produced by the mammalian spinal cord.
Dorsal root afferent depolarization and antidromic firing were studied in isolated spinal cords of neonatal rats. Spontaneous firing accompanied by occasional bursts could be recorded from most dorsal roots in the majority of the cords. The afferent bursts were enhanced after elevation of the extracellular potassium concentration ([K+]e) by 1-2 mM. More substantial afferent bursts were produced when the cords were isolated with intact brain stems. Rhythmic afferent bursts could be recorded from dorsal roots in some of the cords during motor rhythm induced by bath-applied serotonin and N-methyl--aspartate (NMDA). Bilaterally synchronous afferent bursts were produced in pairs of dorsal roots after replacing the NaCl in the perfusate with sodium-2-hydroxyethansulfonate or after application of the gamma-aminobutyric acid-A (GABAA) receptor antagonist bicuculline with or without serotonin (5-HT) and NMDA. Antidromic afferent bursts also could be elicited under these conditions by stimulation of adjacent dorsal roots, ventrolateral funiculus axons, or ventral white commissural (VWC) fibers. The antidromic bursts were superimposed on prolonged dorsal root potentials (DRPs) and accompanied by a prolonged increase in intraspinal afferent excitability. Surgical manipulations of the cord revealed that afferent firing in the presence of bicuculline persisted in the hemicords after hemisection and still was observed after removal of their ventral horns. Cutting the VWC throughout its length did not perturb the bilateral synchronicity of the discharge. These findings suggest that the activity of dorsal horn neurons is sufficient to produce the discharge and that the bilateral synchronicity can be maintained by cross connectivity that is relayed from side to side dorsal to the VWC. Antagonists of GABAB, 5-HT2/5-HT1C, or glutamate metabotropic group II and III receptors could not abolish afferent depolarization in the presence of bicuculline. Depolarization comparable in amplitude to DRPs, could be produced in tetrodotoxin-treated cords by elevation of [K+]e to the levels reported to develop in the neonatal rat spinal cord in response to dorsal root stimulation. A mechanism involving potassium transients produced by neuronal activity therefore is suggested to be the major cause of the GABA-independent afferent depolarization reported in our study. Possible implications of potassium transients in the developing and the adult mammalian spinal cord are discussed.
The flow cytometry analysis of human peripheral blood monocytes separated by a two step density gradient centrifugation is reported. The expression of mRNA level of adenosine receptor (AdoR) subtypes (A1, A2A, A2B and A3) and interleukin 6 (IL-6), interleukin 8 (IL-8) and vascular endothelial growth factor (VEGF) in monocytes were determined using real-time PCR. We found considerable variation across individuals in mRNA expression levels of paracrine factors after the stimulation of adenosine receptors. Our findings suggests the role of adenosinergic system accounted for interindividual differences in monocyte activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.