The deformation of initially spherical drops of radius r0 subjected to an external flow of velocity u is experimentally examined for a large range of Weber and Bond numbers. Observations of the changes in the response are compared with recent analytical predictions. The data show that beyond a critical Weber number the response ceases to be vibratory and becomes monotonic with time. Subsequently, it is found that, although the response is unstable, the deformation imposed by the external aerodynamic pressure distribution remains the dominant factor. Measurements of the drag coefficient yield a mean value ofCD = 2·5 over a large Reynolds-number range. The time at which Taylor instability occurs is shown to be inversely proportional to Bond number to the one-quarter power. There is little evidence of the instability occurring until a normalized time $t^{*} = (\epsilon^{\frac{1}{2}}\bar{t}u/r_0)$ is approximately unity; here ε is the gas/liquid density ratio (ρ/ρ′) and $\bar{t}$ is the real time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.