Coffee (Coffea canephora var robusta) is grown in Southwestern Togo under shade of native Albizia adianthifolia as a low input cropping system. However, there is no information on carbon and nutrient cycling in these shaded coffee systems. Hence, a study was conducted in a mature coffee plantation in Southwestern Togo to determine carbon and nutrient stocks in shaded versus opengrown coffee systems. Biomass of Albizia trees was predicted by allometry, whereas biomass of coffee bushes was estimated through destructive sampling. Above-and belowground biomass estimates were respectively, 140 Mg ha À1 and 32 Mg ha À1 in the coffee-Albizia association, and 29.7 Mg ha À1 and 18.7 Mg ha À1 in the open-grown system. Albizia trees contributed 87% of total aboveground biomass and 55% of total root biomass in the shaded coffee system. Individual coffee bushes consistently had higher biomass in the open-grown than in the shaded coffee system. Total C stock was 81 Mg ha À1 in the shaded coffee system and only 22.9 Mg ha À1 for coffee grown in the open. Apart from P and Mg, considerable amounts of major nutrients were stored in the shade tree biomass in non-easily recyclable fractions. Plant tissues in the shaded coffee system had higher N concentration, suggesting possible N fixation. Given the potential for competition between the shade trees and coffee for nutrients, particularly in low soil fertility conditions, it is suggested that the shade trees be periodically pruned in order to increase organic matter addition and nutrient return to the soil.
Piliostigma reticulatum (DC.) Hochst., an indigenous shrub, forms an important vegetative component of parkland cropping systems in the Sahel; however, its biophysical interactions with soil and crops are not well understood. Therefore, the objectives were to determine the impact of P. reticulatum, under varying fertilizer rates, on crop yield response and soil nutrient dynamics. The experiment had a split‐plot factorial design, where the main plot was shrub (presence or absence) and the subplot was fertilizer rate (0, 0.5, 1.0, or 1.5 times the recommended N–P–K fertilizer rate) applied to a peanut (Arachis hypogaea L.)–pearl millet [Pennisetum glaucum (L.) R. Br.] rotation. In 3 of the 4 yr, P. reticulatum improved or had no effect on crop yields when averaged across fertilizer rates. Overall, millet and peanut biomass and N and P uptake by millet increased in the presence of shrubs and with increasing fertilizer rate. Contrary to P, inorganic N in the soils changed very rapidly, reaching very low levels by the end of the growing season. The N content of soil leachates below the rooting zone was generally lower beneath than outside the shrub canopy, suggesting that the shrub conserves N that is otherwise lost through leaching. Piliostigma reticulatum increased particulate organic matter, indicating that this shrub improved soil quality. These results suggest that P. reticulatum, under nonthermal management and a higher density than typically found in farmers’ fields, has ecological benefits with improved soils and reduced loss of N, which has implications throughout the Sahel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.