Resumo-0 desempenho do algoritmo Least Mean Square (LMS) na estima~ao de canais variantes no tempo e avali ado analiticamente. A analise visa a obtenr;ao de curvas de erro medio quadrdtico (EMQ) em regime permanente adotando urn conjunto de hipoteses freqiientemente atendi das em sistemas de comunicar;6es moveis. 0 canal e mo delado por urn filtro transversal cujos coeficientes sao pro cessos estocasticos estacionarios em sentido amplo, com autocorrelar;6es conhecidas. As express6es obtidas para 0 EMQ sao particularizadas para alguns formatos tipicos de espalhamento Doppler. Obtem-se tambem 0 passo otimo do algoritmo LMS para alguns dos casos estudados. Diver sos resultados analiticos sao validados por simular;ao com pUlacional. 0 efeito da otimizar;ao de passo do LMS sobre o desempenho de urn esquema de recepr;ao adaptativo com criterio de decisao de maxima verossimilhanr;a aplicado a seqiiencias de sfmbolos (Maximum Likelihood Sequence Es timation-MLSEj e tambern avaliado por simular;ao. Palavras-chave: Filtragem adaptativa. Desvanecimento variante no tempo e seletivo em freqiiencia. Erro medio quadrcitico em regime permanente. LMS. Receptores MLSE adaptativos Abstract• An analysis of the steady-state mean square er ror (MSE) performance of the Least Mean Square (LMS) algorithm in the identification of time-varying channels is presented. It is based on a set hypotheses usually adopted in the mobile communications context. The channel im pulse response is modelled as time-varying transversal filter whose coefficients are wide-sense stationary stochastic pro cesses with known power (Doppler) spectra. A generic ex pression of the steady state MSE as a function of the LMS step-size parameter is obtained. Two specific Doppler spec trum models are considered for which the optimization of the LMS step-size parameter in the sense of MSE minimization is also addressed. Close match between numerical and an alytical results is shown in several examples. Besides, the impact of the LMS step-size parameter optimization on the performance of an adaptive MLSE (Maximum Likelihood Se quence Estimation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.