Prostaglandin E2 (PGE2) is thought to be an important modulator of renal ion and water transport, but its effects remain complex and incompletely understood. Here we examined the effects of PGE2 on transepithelial ion transport of M-1 mouse cortical collecting duct cells using short-circuit current (ISC) measurements. Basolateral addition of PGE2 (1 microM) produced a transient peak increase in ISC of 6.3+/-0.8 microA cm(-2) (n=11), followed by a sustained plateau. The PGE2-evoked response was preserved in the presence of 100 micro M apical amiloride with an average peak increase of 10.6+/-1.0 microA cm(-2) (n=23). However, it was greatly diminished in both the presence of apical diphenylamine-2-carboxylic acid (DPC, 1 mM) and the absence of extracellular Cl-, indicating that Cl- secretion had been stimulated. Basolateral PGE2 induced a concentration dependent response, with an EC50 of about 8 nM. Apical addition of PGE2 elicited an ISC response similar to that observed with basolateral PGE2. Furthermore, apical exposure to arachidonic acid (AA) produced a similar increase in ISC, which could be prevented by the cyclooxygenase inhibitor indomethacin, while AA failed to exert an additional effect in the presence of PGE2. Using RT-PCR, we confirmed the expression of the PGE2 (EP) receptor subtypes EP1, EP3 and EP4 but not of EP2 in cultured M-1 CCD cells. We conclude that M-1 cells express functional cyclooxygenase activity and can generate PGE2 which acts in an autocrine manner, causing Cl- secretion.
The central nervous system (CNS) is a site of relative immunological privilege; despite this it can be a target of the immune system under certain conditions. For example, adenoviral vectors elicit an immune response strong enough to result in antigen elimination, in immunologically primed animals. Fas ligand (FasL) contributes to the immune privilege of certain tissues by inducing apoptosis in activated T cells. We therefore investigated whether local overexpression of FasL could downregulate the immune response to adenovirus in the brain. Adenoviral vectors expressing FasL (AdFasL) and the reporter gene b-galactosidase (Adbgal) were co-injected into the striatum of naïve or immunologically primed mice. A co-injection of an adenovirus lacking a transgene (Ad0) and Adbgal acted as a control. At 2 weeks after inoculation, reporter protein expression was significantly reduced with the AdFasL:Adbgal combination compared with the Ad0:Adbgal controls. This was accompanied by a strong inflammatory cell infiltrate, local demyelination and upregulation of pro-inflammatory cytokine gene expression. These experiments demonstrate that FasL overexpression elicits a pro-inflammatory response in the CNS rather than immunosuppression. This was characterized by chronic inflammation and accelerated loss of transgene expression. Induction of such an unexpected pro-inflammatory response caused by introducing FasL may be a peculiarity of the relative immunoprivilege of the unique environment of the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.