Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium responsible for human food-borne disease as well as non-food-borne human, animal and poultry diseases. Because bacteriophages or their gene products could be applied to control bacterial diseases in a species-specific manner, they are potential important alternatives to antibiotics. Consequently, poultry intestinal material, soil, sewage and poultry processing drainage water were screened for virulent bacteriophages that lysed C. perfringens. Two bacteriophages, designated ΦCPV4 and ΦZP2, were isolated in the Moscow Region of the Russian Federation while another closely related virus, named ΦCP7R, was isolated in the southeastern USA. The viruses were identified as members of the order Caudovirales in the family Podoviridae with short, non-contractile tails of the C1 morphotype. The genomes of the three bacteriophages were 17.972, 18.078 and 18.397 kbp respectively; encoding twenty-six to twenty-eight ORF's with inverted terminal repeats and an average GC content of 34.6%. Structural proteins identified by mass spectrometry in the purified ΦCP7R virion included a pre-neck/appendage with putative lyase activity, major head, tail, connector/upper collar, lower collar and a structural protein with putative lysozyme-peptidase activity. All three podoviral bacteriophage genomes encoded a predicted N-acetylmuramoyl-L-alanine amidase and a putative stage V sporulation protein. Each putative amidase contained a predicted bacterial SH3 domain at the C-terminal end of the protein, presumably involved with binding the C. perfringens cell wall. The predicted DNA polymerase type B protein sequences were closely related to other members of the Podoviridae including Bacillus phage Φ29. Whole-genome comparisons supported this relationship, but also indicated that the Russian and USA viruses may be unique members of the sub-family Picovirinae.
It was demonstrated that a bacteriophage that productively infects P. vulgaris was able to bind C. jejuni and by a spot test that the growth of C. jejuni was reduced relative to control bacteria in the region of phage application. There may be two interesting applications of this effect. First, it may be possible to test phage PV22 as an antimicrobial agent to decrease C. jejuni colonization of the chicken intestine. Second, the phage could potentially be utilized for investigating biogenesis of C. jejuni flagella.
Bacteriophage enzyme preparations exolysin and endolysin were studied. Exolysin (a phage-associated enzyme) was obtained from tail fraction and endolysin from phage-free cytoplasmic fraction of disintegrated Salmonella enteritidis cells. A new method for purification of these enzymes was developed, and their molecular masses were determined. The main catalytic properties of the studied enzymes (pH optimum and specificity to bacterial substrates) were found to be similar. Both enzymes lyse Escherichia coli cells like chicken egg lysozyme, but more efficiently lyse S. enteritidis cells and cannot lyse Micrococcus luteus, a good substrate for chicken egg lysozyme. Similar properties of exolysin and endolysin suggest that these enzymes are structurally similar or even identical.
Plasmid pLD105 isolated from a clinical strain of E. coli determines nitrofuran resistance due to inactivation of low-molecular-weight nitrofuran reductase subunit. pLD105 plasmid belongs to IncF. It is a conjugative plasmid and mobilizes chromosome markers, but is not transmitted to strains containing other plasmids. However, the presence of pLD105 plasmid in the recipient strain does not prevent incorporation of other plasmids, including nonconjugative ones. Transfer of nonconjugative plasmids from the donor to a recipient strain carrying pLD105 was denoted as "reverse donation".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.