ABSTRACT:Primary Productivity is the ultimate source of energy for all organisms in an ecosystem. It is associated with the food production and the global carbon cycle. Sensors on remote platforms (satellites) are capable of estimating the Chlorophyll-a concentration in surface waters by measurement of spectral changes of the upwelling light. From these data, which connected with other remotely sensed data, it is possible to use algorithms to estimate the primary production. In this paper, an initial attempt is made to estimate the Primary Productivity along the east coast of India. Vertically Generalized Productivity Model (VGPM) which is a depth (euphotic depth) integrated model is used for the estimation. The common input variables or geophysical parameters used for the model are chlorophyll-a concentration (chl-a), vertically diffuse attenuation coefficient (Kd-490), Photosynthetically Available Radiation (PAR), and Sea Surface Temperature (SST). The chlorophyll-a and Kd-490 parameters were estimated using Oceansat-2 OCM data whereas PAR and SST were taken from MODIS-aqua data. Oceansat-2 Ocean Colour Monitor (OCM) data for the year 2013 is used in the analysis to compute the primary productivity using the weekly (8-day) data products of all the parameters as mentioned above. These products were inter compared with the MODIS Weekly (8-day) Primary Productivity products which were estimated at a global scale using the modified Vertically Generalized Productivity Model (VGPM) with which uses the exponential function of Sea surface temperature (SST).
ABSTRACT:Bay of Bengal (BOB) is a semi enclosed tropical basin located in the north eastern part of the Indian Ocean with high influence of fresh water discharge from major rivers and rainfall. Bay of Bengal (BOB) is highly influenced by monsoons and represents a natural laboratory to study the effect of fresh water fluxes on the marine ecosystem. Bay of Bengal (BOB) is very low in productivity often with the observations of Phytoplankton Blooms. Phytoplankton blooms are one of the prominent features of biological variability in the coastal ecosystems such as estuaries, lagoons, bays, and tidal rivers with rapid production and accumulation of phytoplankton biomass in the ocean. These blooms usually respond to changing physical forcings originating in the coastal ocean like tides, currents and river runoff and to the atmospheric forcing like wind. These physical forcings have different timescales of variability, so algal blooms can be short-term episodic events, recurrent seasonal phenomena, or rare events associated with exceptional climatic or hydrologic conditions. Bloom events and their variability on spatial & temporal scales monitoring through field measurements is difficult. Based on this key hypothesis an effort is made to understand the seasonal and spatial variability of Phytoplankton Blooms along the East Coast of India. In this paper we present the bloom dynamics in their context to the chlorophyll concentration along with species composition and abundance in estuarine and near shore coastal waters of Godavari basin using Oceansat-2 Ocean Colour Monitor (OCM). The initial results revealed that the quasi permanent phytoplankton blooms initiates in the month of midFebruary and evolves for a period of two months and then slowly starts decaying by the mid of May month. The results also stand as a base for the study of influence of Phytoplankton Blooms on the carbon flux estimations and bio-geo-chemical processes in the Bay of Bengal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.