Digital data has been accelerating day by day with a bulk of dimensions. Analysis of such an immense quantity of data popularly termed as big data, which requires tremendous data analysis scalable techniques. Clustering is an appropriate tool for data analysis to observe hidden similar groups inside the data. Clustering distinct datasets involve both Linear Separable and Non-Linear Separable clustering algorithms by defining and measuring their inter-point similarities as well as non-linear similarity measures. Problem Statement: Yet there are many productive clustering algorithms to cluster linearly; they do not maintain quality clusters.Kernel-based algorithms make use of non-linear similarity measures to define similarity while forming clusters specifically with arbitrary shapes and frequencies. Existing System:Current Kernel-based clustering algorithms have few restraints concerning complexity, memory, and performance. Time and Memory will increase equally when the size of the dataset increase. It is challenging to elect kernel similarity function for different datasets. We have classical random sampling and low-rank matrix approximation linear clustering algorithms with high cluster quality and low memory essentials. Proposed work: in our research, we have introduced a parallel computation performing Kernel-based clustering algorithm using Particle Swarm Optimization approach. This methodology can cluster large datasets having maximum dimensional values accurately and overcomes the issues of high dimensional datasets.
Big data is very much practical for real time applicational systems. One of the mostly used real time application worldwide are on unstructured documents. Large number of documents are managed and maintained through popular leadingBig Data platform is Hadoop. It maintains all the information at Hadoop Distributed File System in Blocks. Irrespective of datasize, BigData has opened its path to store and analyze the data which has consumed time. To overcome this, Hadoophas designed cluster process for large volumes of unstructured data computations. Three different cluster architectures like Standalone, Single node cluster and multi node clusters are considered. In this paper, Big Data allows Hadoop platform to boost the processing speed overlarge datasets through cluster architectures, which are studied and analyzed through text documents from newsgroup20 dataset.It identifies the challenges on text mining and its applications using ApacheHadoop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.