We consider shape optimization problems subject to elliptic partial differential equations. In the context of the finite element method, the geometry to be optimized is represented by the computational mesh, and the optimization proceeds by repeatedly updating the mesh node positions. It is well known that such a procedure eventually may lead to a deterioration of mesh quality, or even an invalidation of the mesh, when interior nodes penetrate neighboring cells. We examine this phenomenon, which can be traced back to the ineptness of the discretized objective when considered over the space of mesh node positions. As a remedy, we propose a restriction in the admissible mesh deformations, inspired by the Hadamard structure theorem. First and second order methods are considered in this setting. Numerical results show that mesh degeneracy can be overcome, avoiding the need for remeshing or other strategies. FEniCS code for the proposed methods is available on GitHub.
Abstract. We present a second order algorithm, based on orthantwise directions, for solving optimization problems involving the sparsity enhancing 1-norm. The main idea of our method consists in modifying the descent orthantwise directions by using second order information both of the regular term and (in weak sense) of the 1-norm. The weak second order information behind the 1-term is incorporated via a partial Huber regularization. One of the main features of our algorithm consists in a faster identification of the active set. We also prove that a reduced version of our method is equivalent to a semismooth Newton algorithm applied to the optimality condition, under a specific choice of the algorithm parameters. We present several computational experiments to show the efficiency of our approach compared to other state-of-the-art algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.