As a part of the ESA deep space mission to mercury -BepiColombo -investigations of mercury´s surface layer using a push-broom thermal infrared imaging spectrometer (MERTIS) with a high spectral resolution is planned. One of the scientific goals is the measurement of Christiansen Features which are emissivity maxima resulting from rapid changes in the real part of the mineral´s refractive index. Their positions within the spectral range of 7-14µm deliver information about mineralogical compositions. For these measurement MERTIS needs to have a high spectral resolution of 90nm. The planet will be mapped with a resolution of 500m and a S/N ratio of at least 100. For the measurement of the surface radiation a micro-bolometer detector array will be used. A detectivity of 1.0E9 is required. High sensitive TIR systems commonly use cooled detectors with a large mass budget and high electrical power consumption. One of the challenges of MERTIS is the use of an uncooled micro-bolometer detector. The development of MERTIS is currently in an early phase but a breadboard concept will be presented. Special attention is payed to the first of two phases of the breadboard concept:-The Radiometric Breadboard (RAB) has been configured for the development of the opto-electronical components and for the investigation of radiometric calibration methods and algorithms. The design of the RAB is already a spectrometer configuration but it cannot reach the performance the technical and scientific requirements demand.-The Spectro-Radiometric Breadboard (SRB) will be implemented for investigations of the performances of the optics and detector of MERTIS. Relevant components have to be developed and validated particularly in the spectral domain. The SRB will be the prototype of MERTIS.
ABSTRACT:Lava flow monitoring using satellites provides information on the temporal evolution of volcanic activity. It is usually done using metrological satellites because of the lack of more suitable satellites. The advantage of many meteorological satellites is the availability of appropriate spectral bands. For lava flow monitoring are most useful data in spectrum 3-4 µm (MIR) and 9-12 µm (TIR). However, the spatial resolution of meteorological satellites is usually very coarse causing uncertainties in results. Here we present the first long term satellite monitoring of an active lava flow on Stromboli volcano (end of August till the beginning of November 2014) in high spatial resolution (160 m) and relatively high temporal resolution (~3 days). We analysed data from a test satellite TET-1, which is a test satellite developed at DLR. It carries an instrument dedicated to monitoring of high temperature events. MIR band observations are often saturated at the meteorological satellites. This is not the case of TET-1, although their spatial resolution is very fine for a thermal sensor. TET-1 retrieved 27 datasets over Stromboli during its effusive activity. Some of images were cloudy situations, but most of them were very useful for monitoring of the lava flow radiant power.
FUEGOSAT is the European Space Agency initiative to improve the management of forest fires by means of space remote sensing. The programme is executed through different actions, one of which consists of the development of a semi-operational end-to-end fire recognition service. The Bi-spectral IR Detection (BIRD) satellite, a technological demonstrator designed for the recognition of hot spots, is an excellent precursor for prospective data sources to fill the gap of existing Earth observation satellites and future dedicated satellites that will provide the definitive tool for fire monitoring. Representative regions were selected for a first demonstration in South Europe.After performing the exercise during 2003 summer campaign in Spain, BIRD satellite sensors have proved to be excellent for fire detection and monitoring, and good enough for burnt area data generation, as fire management operators have confirmed. It was possible to generate in time a whole catalogue of products valuable for the decision makers based on BIRD real time transmission data. Special mention has to be done to the hot spot inventory product, able to detect very small fire outbreaks in a reliable way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.