Salt-marsh plants of the lower, middle and upper marsh were compared in their response to iron and manganese. The species studied showed differential sensitivity to high concentrations of Fe (1 000/zM) and Mn (10 000 #M) in hydroculture experiments, species of the lower marsh being more resistant than species of the upper marsh. Fe and Mn concentrations in the root were higher than in the shoot, which was also found in plants inundated with seawater. High Fe and Mn concentrations in the root are probably the result of the oxidizing power of plant roots with a subsequent low translocation of Fe (II) and Mn (II) to the shoot. At high (toxic) Fe and Mn levels in the nutrient solution, Fe and Mn concentrations were much higher in the shoots of sensitive species than in resistant species. The P content of roots and shoots was not influenced by increased Fe and Mn concentrations. Fe and Mn resistance in Spartina anglica and Juncusgerardii, may be in part due to a high root porosity. Other species, however, that are similarly resistant to Fe and Mn lack a well-developed aerenchym. Root porosity, radial oxygen loss and Fe (II) and Mn (II) exclusion by oxidation to Fe (III) (hydr)oxides deposited on the roots form part of the resistance mechanism of hygrohalophytes to Fe and Mn; the differences in this respect between the species may also be due to other metabolic aspects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.