The aim of the present work is to reduce the secular solution around the triangular equilibrium points to periodic solution in the frame work of the generalized restricted thee-body problem. This model is generalized in sense that both the primaries are oblate and radiating as well as the gravitational potential from a belt. We show that the linearized equation of motion of the infinitesimal body around the triangular equilibrium points has a secular solution when the value of mass ratio equals the critical mass value. Moreover, we reduce this solution to periodic solution, as well as some numerical and graphical investigations for the effects of the perturbed forces are introduced. This model can be used to examine the existence of a dust particle near the triangular points of an oblate and radiating binary stars system surrounded by a belt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.