An increase in the rate of coal mining and a reduction of its prime cost can be ensured by comprehensive mechanization and automation of the system of mine auxiliary transport through the widespread introduction of overhead monorail tracks. The potential use of mine monorail tracks are conditioned by the following factors: low payload ratio of the train; reduction of the mine workings cross-section area due to transfer of auxiliary transport to the upper part of the workings; high operational safety; as well as the possibility of dismantling the track in the unused sections and subsequently installing it in new mine workings. The use of rubberized rollers in the drives of mine monorail locomotives enables the coefficient of adhesion of the wheel with the monorail to be increased. It also reduces dynamic loads and the noise level during operation. The purpose of this research is to assess the durability of polymeric rims of drive wheels for mine monorail locomotives, taking into account their operating conditions. Stress distribution over the contact area of the wheel rim with the monorail was determined, enabling the development of measures to increase the service life of drive wheels of mine monorail locomotives to be developed. It was established that the effect of the monorail track deformation has no significant impact on the durability of drive wheel rims of mine monorail locomotives. A mathematical model was obtained to determine the durability of drive wheel polymeric rims, taking into account the maximum dynamic forces arising during the contact of drive wheels with the monorail. The durability of wheel polymeric rims of mine monorail locomotives was assessed in accordance with the Bailey criterion with regard to the maximum values of dynamic contact loads arising during the monorail train movement. It was also established that an increase in the carriage mass from 20 to 47 kN leads to 32 % less durability of a monorail locomotive drive wheel rim (from 8700 to 5900 hours).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.