The contamination of sediments caused by the deposition of industrial residues from titanium dioxide production, in sand dunes near a wetland was assessed through atomic absorption spectrometry. The contamination occurred near a shallow freshwater wetland called Jauá Lake, along the coast of Camaçari, Bahia, Brazil. Five core samples were collected, including a reference site, from Jauá Lake and one from a small lake, near the deposition site. Cores were cut in 20-cm sections. Fractions <63 μm were analysed for copper, cadmium, zinc, iron, lead, aluminium, mercury and titanium. Metal concentrations on the upper layer of sediments were, as a whole, higher than in lower ones. Concentrations from the reference site were similar to those from the other sites in Jauá Lake. Absolute values of most metals in the sediments of the Dunas Lake located near the contamination site were higher than in all other stations. The hypothesis, that:: (1) contamination coming from groundwater would contaminate the sediment; and (2) there would be a gradient of decreasing contamination from sites near the residue deposit to sites located further away, were rejected. The continuous removal of groundwater may have contributed to the reduction of further contamination. It is recommended that future studies examine the concentration of metals in plants and the role of plants in metal bioavailability.
To predict how re-colonisation of acidified lakes will proceed, at least two approaches are possible: (i) to compare the life history traits of candidate species and determine which one has the highest fitness, and (ii) to simulate a more realistic scenario carrying out experiments with the grouping of the candidate species, so that the intrinsic rate of natural increase of each species is integrated with its sensitivity to low pH and its ability to compete with the other candidate populations. The objective of the present study was to investigate the future re-colonisation of such acidified systems, taking as case-study a tropical pond (Lagoa das Dunas, Camaçari, BA, Brazil) and four species of cladocerans occurring in nearby water bodies (Ceriodaphniacornuta, Ceriodaphniasilvestrii, Latonopsisaustralis and Macrothrix elegans), by comparing the two above mentioned approaches. The second approach included two sets of in situ microcosms experiments, one simulating the re-colonisation by immigrating ephippia, thus using neonates of each species as colonisers, and another simulating the immigration of adults. Both these simulations followed nearly the same trends. The integration of the effects of a higher temperature, a different photoperiod and species competition determined differences in the species densities ranking between the two approaches: life history versus microcosms. The densities of C. cornuta in the microcosms matched the biphasic concentration/response hormetic model, in the simultaneous presence of two increasingly intense stressors (interspecific competition and acidity), with a low-dose stimulation and a high-dose inhibition. The present study provided, thus, a further support to the acceptance of hormesis in ecotoxicology, also at the population level in multispecies experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.