Cancer gene therapy vectors are promising tools for killing cancer cells with the purpose of eradicating malignant tumours entirely. Different delivery methods of vectors into the cancer cells, including both non-viral and viral, as well as promoters for the targeted expression of genes encoding anticancer proteins were developed for effective and selective killing of cancer cells without harming healthy cells. Many vectors have been created to kill cancer cells, and some vectors suppress malignant tumours with high efficiency. This review is focused on vectors bearing genes for nucleases such as deoxyribonucleases (caspase-activated DNase, deoxyribonuclease I-like 3, endonuclease G) and ribonucleases (human polynucleotide phosphorylase, ribonuclease L, α-sarcin, barnase), as well as vectors harbouring gene encoding ribonuclease inhibitor. The data concerning the functionality and the efficacy of such vectors are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.