The volume, location and extent of historical lava flows are important when assessing volcanic hazards, as well as the productivity or longevity of a volcanic system. We use a Landsat/Hyperion/ALI dataset and automated classification methods to map lava flows at Nyamuragira volcano in the Democratic Republic of the Congo. The humid tropical climate of Nyamuragira is advantageous because its lava flows are emplaced onto heavily forested flanks, resulting in strong contrast between lava and vegetation, which contributes to efficient flow mapping. With increasing age, there is an increase in Landsat band-4 reflectance, suggesting lava flow revegetation with time. This results in a distinct spectral contrast to delineate overlapping flows emplaced *5 years apart. Areal extents of the flows are combined with published lava flow thicknesses to derive volumes. The Landsat/ Hyperion/ALI dataset is advantageous for mapping future flows quickly and inexpensively, particularly for volcano observatories where resources are limited.
[1] We present new olivine-hosted melt inclusion volatile (H 2 O, CO 2 , S, Cl, F) and major element data from five historic eruptions of Nyamuragira volcano (1912, 1938, 1948, 1986, 2006). Host-olivine Mg#'s range from 71 to 84, with the exception of the 1912 sample (Mg# = 90). Inclusion compositions extend from alkali basalts to basanite-tephrites. Our results indicate inclusion entrapment over depths ranging from 3 to 5 km, which agree with independent estimates of magma storage depths (3-7 km) based on geophysical methods. Melt compositions derived from the 1986 and 2006 Nyamuragira tephra samples best represent pre-eruptive volatile compositions because these samples contain naturally glassy inclusions that underwent less post-entrapment modification than crystallized inclusions. Volatile concentrations of the 1986 and 2006 samples are as follows: H 2 O ranged from 0.6 to 1.4 wt %, CO 2 from 350 to 1900 ppm, S from 1300 to 2400 ppm, Cl from 720 to 990 ppm, and F from 1500 to 2200 ppm. Based on FeO T and S data, we suggest that Nyamuragira magmas have higher f O 2 (>NNO) than MORB. We estimate the total amount of sulfur dioxide (SO 2 ) released from the 1986 (0.04 Mt) and 2006 (0.06 Mt) Nyamuragira eruptions using the petrologic method, whereby S contents in melt inclusions are scaled to erupted lava volumes. These amounts are significantly less than satellite-based SO 2 emissions for the same eruptions (1986 = ∼1 Mt; 2006 = ∼2 Mt). Potential explanations for this observation are: (1) accumulation of a vapor phase within the magmatic system that is only released during eruptions, and/or (2) syn-eruptive gas release from unerupted magma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.