A role for mechanical stimulation in the control of cell fate has been proposed and mechanical conditioning of mesenchymal stem cells (MSCs) is of interest in directing MSC behavior for tissue engineering applications. This study investigates strain-induced differentiation and proliferation of MSCs, and investigates the cellular mechanisms of mechanotransduction. MSCs were seeded onto a collagen-coated silicone substrate and exposed to cyclic tensile mechanical strain of 2.5% at 0.17 Hz for 1-14 days. To examine mechanotransduction, cells were strained in the presence of the stretch-activated cation channel (SACC) blocker, gadolinium chloride (GdCl(3)); the extracellular regulated kinase (ERK) inhibitor, U0126; the p38 inhibitor, SB203580; and the phosphatidylinosito1 3-kinase (PI3-kinase) inhibitor, LY294002. Following exposure to strain, the osteogenic markers Cbfalpha1, collagen type I, osteocalcin, and BMP2 were temporally expressed. Exposure to strain in the presence of GdCl(3) (10 microM) reduced the induction of collagen I expression, thus identifying a role for SACC, at least in part, as mechanosensors in strain-induced MSC differentiation. The strain-induced synthesis of BMP2 was found to be reduced by inhibitors of the kinases, ERK, p38, and PI3 kinase. Additionally, mechanical strain reduced the rate of MSC proliferation. The identification of the mechanical control of MSC proliferation and the molecular link between mechanical stimulation and osteogenic differentiation has consequences for regenerative medicine through the development of a functional tissue engineering approach.
Mechanical conditioning of mesenchymal stem cells (MSCs) has been adopted widely as a biophysical signal to aid tissue engineering applications. The replication of in vivo mechanical signaling has been used in in vitro environments to regulate cell differentiation, and extracellular matrix synthesis, so that both the chemical and mechanical properties of the tissue-engineered construct are compatible with the implant site. While research in these areas contributes to tissue engineering, the effects of mechanical strain on MSC apoptosis remain poorly defined. To evaluate the effects of uniaxial cyclic tensile strain on MSC apoptosis and to investigate mechanotransduction associated with strain-mediated cell death, MSCs seeded on a 2D silicone membrane were stimulated by a range of strain magnitudes for 3 days. Mechanotransduction was investigated using the stretch-activated cation channel blocker gadolinium chloride, the L-type voltage-activated calcium channel blocker nicardipine, the c-jun NH(2)-terminal kinase (JNK) blocker D-JNK inhibitor 1, and the calpain inhibitor MDL 28170. Apoptosis was assessed through DNA fragmentation using the terminal deoxynucleotidyl transferase mediated-UTP-end nick labeling method. Results demonstrated that tensile strains of 7.5% or greater induce apoptosis in MSCs. L-type voltage-activated calcium channels coupled mechanical stress to activation of calpain and JNK, which lead to apoptosis through DNA fragmentation. The definition of the in vitro boundary conditions for tensile strain and MSCs along with a proposed mechanism for apoptosis induced by mechanical events positively contributes to the development of MSC biology, bioreactor design for tissue engineering, and development of computational methods for mechanobiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.