Abstract-A computational technique is presented for efficient and accurate time-domain analysis of multiport waveguide structures with arbitrary metallic and dielectric discontinuities using a higher order finite element method (FEM) in the frequency domain. It is demonstrated that with a highly efficient and appropriately designed frequency-domain FEM solver, it is possible to obtain extremely fast and accurate time-domain solutions of microwave passive structures performing computations in the frequency domain along with the discrete Fourier transform (DFT) and its inverse (IDFT). The technique is a higher order large-domain Galerkin-type FEM for 3-D analysis of waveguide structures with discontinuities implementing curl-conforming hierarchical polynomial vector basis functions in conjunction with Lagrange-type curved hexahedral finite elements and a simple single-mode boundary condition, coupled with standard DFT and IDFT algorithms. The examples demonstrate excellent numerical properties of the technique, which appears to be the first time-fromfrequency-domain FEM solver, primarily due to (i) very small total numbers of unknowns in higher order solutions, (ii) great modeling flexibility using large (homogeneous and continuously inhomogeneous) finite elements, and (iii) extremely fast multifrequency FEM analysis (the global FEM matrix is filled only once and then reused for every subsequent frequency point) needed for the inverse Fourier transform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.