Feedstock conversion and yield products are studied through a 3D model simulating the main reactor of the fluid catalytic cracking (FCC) process. Computational fluid dynamic (CFD) is used with Eulerian-Eulerian approach to predict the fluid catalytic cracking behavior. The model considers 12 lumps with catalyst deactivation by coke and poisoning by alkaline nitrides and polycyclic aromatic adsorption to estimate the kinetic behavior which, starting from a given feedstock, produces several cracking products. Different feedstock compositions are considered. The model is compared with sampling data at industrial operation conditions. The simulation model is able to represent accurately the products behavior for the different operating conditions considered. All the conditions considered were solved using a solver ANSYS CFX 14.0. The different operation process variables and hydrodynamic effects of the industrial riser of a fluid catalytic cracking (FCC) are evaluated. Predictions from the model are shown and comparison with experimental conversion and yields products are presented; recommendations are drawn to establish the conditions to obtain higher product yields in the industrial process.
-This work presents a model to predict the behavior of velocity, gas holdup and local concentration fields in a pseudo-two-phase gas-liquid column reactor applied for thermal hydrocracking of petroleum heavy fractions. The model is based on the momentum and mass balances for the system, using an Eulerian-Eulerian approach. Using the k-ε model, fluid dynamics accounts for both laminar and turbulent flows, with discrete small bubbles (hydrogen) flowing in a continuous pseudohomogeneous liquid phase (oil and catalyst particles). The petroleum is assumed to be a mixture of pseudocomponents, grouped by similar chemical structural properties, and the thermal hydrocracking is taken into account using a kinetic network based on these pseudocomponents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.