We report on biohybrid surfactants, termed "giant amphiphiles", in which a protein or an enzyme acts as the polar head group and a synthetic polymer as the apolar tail. It is demonstrated that the modification of horseradish peroxidase (HRP) and myoglobin (Mb) with an apolar polymer chain through the cofactor reconstitution method yields giant amphiphiles that form spherical aggregates (vesicles) in aqueous solution. Both HRP and Mb retain their original functionality when modified with a single polystyrene chain, but reconstitution has an effect on their activities. In the case of HRP the enzymatic activity decreases and for Mb the stability of the dioxygen myoglobin (oxy-Mb) complex is reduced, which is probably the result of a disturbed binding of the heme in the apo-protein or a reduced access of the substrate to the active site of the enzyme or protein.
The conversion is described of phenolsulphonephtalein (phenol red) to 3,3',5,5'-tetrabromophenolsulphonephthalein (bromophenol blue) by bromoper-oxidase from the brown alga Ascophyllum nodosum. This reaction provides a convenient assay for the detection of bromoperoxidase activity in vitro. Bromoperoxidase was shown to be stable under turnover conditions for three weeks at room temperature, catalyzing the bromination of phenol red into bromophenol blue. When stored at room temperature in organic sol vents such as acetone, methanol, ethanol [present up to 60% (v/v)], and 1-propanol [40% (v/v)], bromoperoxidase was stable for more than one month. As far as we know this is the first example of an oxidoreductase which displays such great stability. This enhances the applicability of the enzyme in organic synthesis.
The influence of chirality on the nonlinear optical properties of poly(isocyanide)s is examined. It is found that the chiral and nonlinear properties can occur on different levels of the molecular structure and can therefore be separately tuned, but that they still can be coupled together. The NLO properties of chiral molecules can also be enhanced significantly byoptimizing the magnetic contriutions to the nonlinearity, an important result for applicatons in electro‐optics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.