This paper provides a classification methodology of Malayalam characters segmented from scanned document images. Optical Character Recognition (OCR) is one of the successful area which has wide variety of applications related to pattern recognition. This paper describes segmented character recognition using Singular Value Decomposition (SVD). Euclidean distance measure is used for finding the nearest character class of the segmented character image during testing. For each character class, a resultant template is created from training character images using the proposed approach, which in turn reduces the comparisons required for classification. The result obtained from the experiment shows that this method provides an accuracy of 97%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.