Traditionally, in Middle Eastern countries, many cultures use chewing sticks of arak for medicinal purposes especially, for oral cleanliness care. It was used by Muslims for treatment of teeth and highly recommended to be used by Muslims during the whole day. Therefore, the present work aimed to determine the total phenolic content and total flavonoids in two Miswak extracts obtained from arak roots collected from two different localities in Saudi Arabia. They were extracted with aqueous ethanol (80%) and used to estimate in vitro their antioxidative abilities. The new findings showed that the two tested extracts contained significantly different amounts of both total phenolic content and total flavonoids. According to the increase of total phenolic contents and total flavonoids obtained from the two extracts, Miswak collected from the southern region was found to contain more contents than those collected from the middle region. The results of antioxidant activities of Miswak root extract obtained by using different in vitro methods were varied depending on the technique used. According to the malondialdehyde (MDA) method, hydrogen peroxide (H2O2) scavenging ability and 1,1-diphenyl-2-picrylhydrazyl (DPPH) methods, the two Miswak extracts exhibited to have high to very high antioxidant activities. Mostly, the values of antioxidant activities of Southern region have been shown to be always the highest.
Changes in growth and ultrastructure of Azolla caroliniana in response to elevated UV-B radiation were investigated. Exposure of plants to UV-B radiation for 1, 8, 16, 24 and 48 h exhibited a significant decrease in biomass and relative growth rate. This decrease resulted in an increase in doubling time over the control. Also, Chl a and b contents were significantly decreased especially after 16 h. The reduction was accompanied by a decrease in 5-aminolaevulinic acid content (precursor of chlorophyll). On the other hand, contents of carotenoid and UV-absorbing phenolic compounds (flavonoids and anthocyanins) were increased.
Exposure of Azolla plants to UV-B radiation for 6 h resulted in a decrease in biomass and relative growth rate (RGR), which coincided with an increase in doubling time (DT) as compared with the control. Also, the protein content decreased. On the other hand, hydrogen peroxyde (H 2 O 2 ) and malondialdehyde (MDA) accumulated significantly in UV-treated Azolla plants. Conversely, the addition of selenium (Se) at 1 ppm resulted in a significant increase in biomass and protein content of untreated and UV-treated Azolla plants, and a significant reduction in both H 2 O 2 and MDA. Moreover, the addition of Se to UV-treated and untreated Azolla plants resulted in a significant increase in total ascorbate and total glutathione (GSH) contents compared with the control and UV-stressed Azolla plants. Also, glutathione redox potential (GSH/TG) increased significantly in UV-treated Azolla plants in the presence of Se. There also was a significant increase (38%) in ascorbate peroxidase (APX) activity in UV-treated plants compared with the control. APX activity in the presence of Se did not change significantly compared with the control. Glutathione reductase (GR) activity increased significantly in UV-treated Azolla, while glutathione peroxidase (GSH-PX) activity did not. On the other hand, both GSH-PX and GR activity in untreated and UV-treated Azolla plants were significantly enhanced by the application of Se to the nutrient media at a concentration of 1 ppm. Therefore, we can conclude that Se protects Azolla plants from UV-B stress.
Azolla caroliniana was exposed to 5 °C in darkness for 1, 2, 3, 5 or 7 d and then recovered for 7 d. Plants previously chilled for 2 or 3 d exhibited higher growth rates when transferred to normal temperature than either the control plants or those previously chilled for 5 or 7 d. Increased plant growth may be related to increased contents of chlorophyll, sucrose, and reducing sugars, due to increased photosynthetic capacity. In another experiment Azolla plants were chilled at 5 °C for 7 d and then transferred for 0, 4, 8, 12, or 16 d recovery to the N-free Hoagland solution or Hoagland solution containing 5 mM KNO 3 . In previously chilled plants, the growth rate was decreased. In the medium supplemented with nitrogen, the growth rate was greater than in the N-free medium in both chilled and nonchilled plants. In chilled plants the decrease in growth rate may be related to the disturbance of Anabaena azollae cells where the protecting envelope of the heterocysts was deorganized. During the recovery the rate of N 2 -fixation increased in both chilled and nonchilled plants up to 12 d after which both rates were similar. However, during the first 4 d the rate of the nonchilled plants was approximately 4-fold that of the previously chilled plants. Nitrate reductase and nitrite reductase activities in control plants were higher than in those previously chilled for 7 d. Both activities increased in nonchilled and previously chilled plants up to 12 d then decreased. The total protein content increased up to 12 d in chilled and nonchilled plants after which it decreased. Under all treatments, the values were higher in nonchilled plants than in those previously chilled ones and were also higher in presence of N than in its absence. Thus the presence of N-source in the medium counteracts the effect of chilling injury particularly during prolonged recovery.Additional key words: nitrate reductase, nitrite reductase, rate of nitrogen fixation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.