Abstract. Since the industrial revolution, the world is experiencing a huge change in its climate, which causes many imbalances such as flash floods (FF). The aim of this study is to propose a new approach for detection and forecasting of flash flood susceptibility in the city of Tetouan, Morocco. For this regard, support vector machine (SVM), logistic regression (LR), random forest (RF), Naïve Bayes (NB) and Artificial neural network (ANN) are used based on 1101 points (680 flood points and 421 non-flood points) and 9 flash-flood predictors (Elevation , Slope , Aspect , LU/LC , Stream Power Index , Plan curvature , Profile Curvature , Topographic Position Index and Topographic Wetness Index ) that were extracted from the DEM (10m resolution) and satellite imagery (Sentinel 2B) of the study area . Models were trained on 70% and tested on 30% of this dataset also they were evaluated using several metrics such as the Receiver Operating Characteristic (ROC) Curve, precision, recall, score and kappa index. The result demonstrated that RF (AUC = 0.99, Accuracy = 96%, Kappa statistics = 0.92) has the highest performance, followed by ANN (AUC = 0.98, Accuracy = 95%, Kappa statistics = 0.89) and SVM (AUC = 0.96, Accuracy = 92%, Kappa statistics = 0.80). The proposed approach is an effective tool for forecasting and predicting FF that can help reduce the severity of this disaster.
Abstract. In view of the increase in human activities, climate change and related hazards, land use and land cover (LULC) mapping is becoming a fundamental part of the process of any development or hazard prevention project. From this perspective, we propose a new approach for mapping LULC using Machine learning algorithms by comparing the result of five composition methods based on Google Earth Engine in the city of Tetouan - Morocco. To achieve this goal, considering the Sentinel S2 L2 imageries as a source data , five datasets were derived to make the classification generating by aggregating functions (median , mean , max , min and mode). Then based on the very high resolution (VHR) satellite images provided by Google Earth comes the next step that involves selecting samples that are divided into five classes (barren land, water surface, vegetation, forest, and urban areas), which will be further split into two parts: 70% as a training data -used to feed the machine learning algorithms (support vector machine (SVM), random forest (RF) and classification and regression trees (CART))- and 30% as a testing data for evaluating the models using accuracy assessments. The results for all datasets indicate that the SVM algorithm has the highest accuracy and its performance is better than the other algorithms (RF and CART). The average overall accuracy of SVM , RF , and CART was 87.99% , 87.81% and 84.72% , respectively. Furthermore, for each algorithm, the comparison between the results of the different composites indicates that the use of the mean composite is the most suitable for LULC mapping. Finally, GEE has proven to be an effective and rapid method for LULC mapping, especially with the use of compositional imagery that can assist decision makers in future planning or risk prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.