We study renormalization-group flow patterns in theories arising on D1-branes in various supersymmetry-breaking backgrounds. We argue that the theory of N D1-branes transverse to an orbifold space can be fine-tuned to flow to the corresponding orbifold conformal field theory in the infrared, for particular values of the couplings and theta angles which we determine using the discrete symmetries of the model. By calculating various nonplanar contributions to the scalar potential in the worldvolume theory, we show that fine-tuning is in fact required at finite N, as would be generically expected. We further comment on the presence of singular conformal field theories (such as those whose target space includes a "throat" described by an exactly solvable CFT) in the non-supersymmetric context. Throughout the analysis two applications are considered: to gauge theory/gravity duality and to linear sigma model techniques for studying worldsheet string theory.
We present Poincare invariant domain wall ("3-brane") solutions to some 5-dimensional effective theories which can arise naturally in string theory. In particular, we find theories where Poincare invariant solutions exist for arbitrary values of the brane tension, for certain restricted forms of the bulk interactions. We describe examples in string theory where it would be natural for the quantum corrections to the tension of the brane (arising from quantum fluctuations of modes with support on the brane) to maintain the required form of the action. In such cases, the Poincare invariant solutions persist in the presence of these quantum corrections to the brane tension, so that no 4d cosmological constant is generated by these modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.