Modern organizational and technical systems have been developing in an environment that is marked by capriciousness, uncertainty, risk, variability, and evolution (CURVE factors). As organizational-technical systems grow bigger, their internal complexity increases, too, both structurally and dynamically. The article substantiates the appropriateness of employing the principles of systems engineering for managing such systems.The authors analyzed various theoretical concepts of and practice-based approaches to the development of systems engineering in the context of ensuring the resilience and agility of complex organizational-technical systems. Using the case of power engineering and hi-tech industries, the authors show that for organizations that operate critical infrastructure facilities it is essential to make sure that the system stays functional in adverse conditions and is able to recover quickly after a failure. It is demonstrated that for addressing the above task it is critical to use instruments that nurture interdisciplinary competences in individual professionals and in teams that manage the development of complex systems and implement major innovation projects.As part of the study, the authors also look at the possibility of using the principles of resilient systems design and the fundamental principles for agile systems engineering when managing critical infrastructure facilities.
The reliability of heat supply in cities is largely determined by the actual condition of pipelines, for example, corrosive and erosive wear. Comparative analysis of methodological approaches to assessing the technical condition of district heating networks shows that the most innovative and effective approach is internal pipe inspection using non-destructive magnetic testing. The article presents the results of research tests of the method in the context of its use for maintenance and retrofitting of the heating infrastructure in Yekaterinburg, a Russian city with a complex topology of utility networks and extremely uneven tear and wear on some sections of the networks. The authors describe the technical and economic peculiarities of using internal pipe inspection methods at various stages of testing and formulate qualitative and quantitative criteria for assessing the effectiveness of the method being presented. Recommendations have been suggested for the optimum application of the method by heat network operators, especially those operating and servicing district heating systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.