By investigating the prevalence and resistance characteristics of Gram-negative bacteria from organic and conventional kept laying hens against 31 (Campylobacter: 29) different antibiotics using the microdilution method, we determined to what extent different keeping systems influence bacterial resistance patterns. For this purpose, samples from 10 organic and 10 conventional flocks in Bavaria (Germany) were investigated four times between January 2004 and April 2005. Altogether, 799 cloacal swabs and 800 eggs (contents and shells) were examined. The bacterial investigation performed with standardized cultural methods showed prevalence for all bacteria groups in about the same order of magnitude in the two different keeping systems: Salmonella spp. 3.5% (organic ([org])) versus 1.8% (conventional ([con])); Campylobacter spp. 34.8%(org) versus 29.0%(con) and E. coli 64.4%(org) versus 69.0%(con). Coliforms (Citrobacter, Enterobacter, Pantoea) were only isolated in single cases. In eggs, generally less bacteria were detected, predominantly Escherichia; Salmonella and Campylobacter were only scarcely isolated. Salmonella enterica ssp. enterica serovar Typhimurium (n=10) were resistant to up to nine, S. of the serogroup B (n=4) up to six antibiotics. All tested Salmonella (n=23) proved to be resistant to spectinomycin. Escherichia coli (n=257(org) and 276(con)) from organic layers showed significant lower resistance rates and higher rates of susceptible isolates to nine agents, namely amoxicillin/clavulanic acid, ampicillin, cefaclor, cefoxitin, cefuroxime, doxycycline, mezlocillin, neomycin and piperacillin. In contrast, only two antibiotics turned out to be more effective in conventional isolates (gentamicin and tobramycin). In the case of Campylobacter jejuni (n=118(org) and 99(con)), statistically significantly better rates were observed for isolates from organic flocks concerning imipenem and amoxicillin/clavulanic acid, whereas fosfomycin was more potent in strains from conventional flocks. Results of this study indicate that both resistance rates and mean minimum inhibitory concentrations of bacteria isolated from organic keeping systems have lower values than those from conventional ones, particularly recognizable for E. coli. Thus, organic livestock farming with its restrictions and additional requirements contributes to further effectiveness of antibiotics.
By investigating the prevalence and antimicrobial resistance characteristics of Gram-positive bacteria from organic and conventional keeping systems of laying hens, it was to be determined to what extent these properties are influenced by the different systems. For this purpose, a total of 799 cloacal swabs and 800 egg samples were examined. Prevalences for all selected bacteria from cloacal swabs were much the same for both organic and caged birds: Listeria spp.1.3%[org] versus 1.6%[con]; Enterococcus spp. 95.5%[org] versus 97.5%[con]. Egg contents and eggshells were generally contaminated to a lesser extent, primarily with Enterococcus spp. Listeria isolates were susceptible to almost all tested antibiotics, only three Listeria innocua from conventional keepings were resistant to clindamycin; one isolate additionally to imipenem. High percentages of Enterococcus faecalis were resistant to doxycycline and macrolides. Enterococcus faecium proved to have high resistance rates to clindamycin, fosfomycin and erythromycin; 9.1% were even resistant to the reserve antibiotic synercid. Further, Enterococcus spp. showed higher resistance rates to doxycycline, erythromycin, fosfomycin and rifampicin. No glycopeptide resistant enterococci were detected. A correlation between keeping system and resistance/susceptibility rates could be demonstrated. In detail, E. faecalis from organic laying hen husbandries showed significant lower resistance prevalences to tylosin, streptomycin and doxycycline; susceptibility rates were higher for enrofloxacin and ciprofloxacin. Rifampicin and imipenem were more effective in isolates from conventional keepings (P < 0.05). The amounts of resistant isolates of the Enterococcus raffinosus from organic farms were significantly lower, the amounts of sensitive isolates were significantly higher than from conventional farms concerning eight antibiotics (P < 0.05). When comparing the susceptibility/resistance rates, as well as the mean minimum inhibitory concentrations values, the consistent tendency is that bacteria from organic layer flocks are more susceptible to antimicrobials. These results show that organic livestock farming plays a part in contributing to reduced antibiotic resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.