A pixel-segmented ionization chamber has been designed and built by Torino University and INFN. The detector features a 24 x 24 cm2 active area divided in 1024 independent cylindrical ionization chambers and can be read out in 500 micros without introducing dead time; the digital charge quantum can be adjusted between 100 fC and 800 fC. The sensitive volume of each single ionization chamber is 0.07 cm3. The purpose of the detector is to ease the two-dimensional (2D) verifications of fields with complex shapes and large gradients. The detector was characterized in a PMMA phantom using 60Co and 6 MV x-ray photon beams. It has shown good signal linearity with respect to dose and dose rate to water. The average sensitivity of a single ionization chamber was 2.1 nC/Gy, constant within 0.5% over one month of daily measurements. Charge collection efficiency was 0.985 at the operating polarization voltage of 400 V and 3.5 Gy/min dose rate. Tissue maximum ratio and output factor have been compared with a Farmer ionization chamber and were found in good agreement. The dose profiles have been compared with the ones obtained with an ionization chamber in water phantom for the field sizes supplied by a 3D-Line dynamic multileaf collimator. These results show that this detector can be used for 2D dosimetry of x-ray photon beams, supplying a good spatial resolution and sensibly reducing the time spent in dosimetric verification of complex radiation fields.
Two detectors for fast two-dimensional (2D) and quasi-three-dimensional (quasi-3D) verification of the dose delivered by radiotherapy beams have been developed at University and Istituto Nazionale di Fisica Nucleare (INFN) of Torino. The Magic Cube is a stack of strip-segmented ionization chambers interleaved with water-equivalent slabs. The parallel plate ionization chambers have a sensitive area of 24 x 24 cm2, and consist of 0.375 cm wide and 24 cm long strips. There are a total of 64 strips per chamber. The Magic Cube has been tested with the clinical proton beam at Loma Linda University Medical Centre (LLUMC), and was shown to be capable of fast and precise quasi-3D dose verification. The Pixel Ionization Chamber (PXC) is a detector with pixel anode segmentation. It is a 32 x 32 matrix of 1024 cylindrical ionization cells arranged in a square 24 x 24 cm2 area. Each cell has 0.4 cm diameter and 0.55 cm height, at a pitch of 0.75 cm separates the centre of adjacent cells. The sensitive volume of each single ionization cell is 0.07 cm3. The detectors are read out using custom designed front-end microelectronics and a personal computer-based data acquisition system. The PXC has been used to verify dynamic intensity-modulated radiotherapy for head-and-neck and breast cancers.
Recurrences of malignant tumours in the chest wall are proposed as a valuable model of tissue mainly perfused by small size vessels (the so-called 'phase III' vessels). Invasive thermal measurements have been performed on two patients affected by cutaneous metastasis of malignant tumours during hyperthermic sessions. Thermal probes were inserted into catheters implanted into the tissue at different depths. In one of the catheters a probe connected with laser-Doppler equipment was inserted to assess blood perfusion in the tumour periphery. The perfusion was monitored throughout the sessions, and a noticeable temporal variability was observed. The effect of the perfusion on the thermal map in the tissue was evaluated locally and the 'effective conductivity' of the perfused tissue was estimated by means of the numerical integration of the 'bio-heat' equation. The tumour temperature, at the site where the perfusion probe is located, can be predicted by the numerical model provided two free parameters, alpha and beta, are evaluated with a fitting procedure. Alpha is related to the effective conductivity and beta to the SAR term of the bio-heat equation. The model aimed at estimating the 'effective conductivity' K(eff) of the perfused tissue, and average values of K(eff) of 0.27 +/- 0.03 W m(-1) degrees C(-1) in Patient 1 and of 0.665 +/- 0.005 W m(-1) degrees C(-1) in Patient 2 were obtained throughout the treatment. However, when the average temperature in a larger tumour volume is to be predicted but only a single, 'local' measurement of the perfusion is available and is assumed to be representative for the whole region, the model results are far less satisfactory. This is probably due to the fact that changes of blood perfusion throughout hyperthermic sessions occur to different extents within the tumour volume, and the differences in perfusion cannot be ignored. The above result suggests that, in addition to the 'temperature map', also a 'perfusion map' within the heated volume should be monitored routinely throughout hyperthermic sessions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.