Summary
In this paper, we provide algorithms for computing the bidiagonal decomposition of the collocation matrices of a very general class of bases of interest in computer‐aided geometric design and approximation theory. It is also shown that these algorithms can be used to perform accurately some algebraic computations with these matrices, such as the calculation of their inverses, their eigenvalues, or their singular values. Numerical experiments illustrate the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.