Interlaced carbon nanotube electrodes (ICE) were prepared by vacuum filtering a well-dispersed carbon nanotube-Nafion solution through a laser-cut acrylic stencil onto a commercial polyvinylidene fluoride (PVDF) microfiltration (MF) membrane. Dead-end filtration was carried out using 10 and 10 CFU mL Pseudomonas fluorescens to study the effects of the electrochemically active ICE on bacterial density and morphology, as well as to evaluate the bacterial fouling trend and backwash (BW) efficacy, respectively. Finally, a simplified COMSOL model of the ICE electric field was used to help elucidate the antifouling mechanism in solution. At 2 V DC and AC (total cell potential), the average bacterial log removal of the ICE-PVDF increased by ∼1 log compared to the control PVDF (3.5-4 log). Bacterial surface density was affected by the presence and polarity of DC electric potential, being 87-90% lower on the ICE cathode and 59-93% lower on the ICE anode than that on the PVDF after filtration, and BW further reduced the density on the cathode significantly. The optimal operating conditions (2 V AC) reduced the fouling rate by 75% versus the control and achieved up to 96% fouling resistance recovery (FRR) during BW at 8 V AC using 155 mM NaCl. The antifouling performance should mainly be due to electrokinetic effects, and the electric field simulation by COMSOL model suggested electrophoresis and dielectrophoresis as likely mechanisms.
Iodine-doped
graphene has recently attracted significant interest as a result of
its enhanced conductivity and improved catalytic activity. Using density
functional theory calculations, we obtain the formation energy, desorption
rate, and electronic properties for graphene systems doped with polyiodide
chains consisting of 1–6 iodine atoms in the low-concentration
limit. We find that I3 and I5 act as p-type
surface dopants that shift the Fermi level 0.46 and 0.57 eV below
the Dirac point, respectively. For these two molecules, molecular
orbital theory and analysis of the charge density show that doping
transfers electronic charge to iodine π* molecular orbitals
oriented perpendicular to the graphene sheet. For even-length polyiodides,
we find that I6 and I4 decompose to I2, which readily desorbs at 300 K. Adsorption energy calculations
further show that I3 acts as an effective catalyst for
the oxygen reduction reaction on graphene by stabilizing the rate-limiting
OOH intermediate.
Electric-field alignment of carbon nanotubes (CNT) is widely used to produce composite materials with anisotropic mechanical, electrical, and optical properties. Nevertheless, consistent results are difficult to achieve, and even under identical electric field conditions the resulting aligned morphologies can vary over μm to cm length scales. In order to improve reproducibility, this study addresses (1) how solution processing steps (oxidation, sonication) affect CNT properties, and (2) how CNT chemistry, morphology, and dispersion influence alignment. Aligned CNT were deposited onto PVDF membranes using a combination of electric-field alignment and vacuum-filtration. At each step in solution processing, the CNT chemistry (oxygen content) and morphology (length/diameter) were characterized and compared to the final aligned morphology. Well-dispersed CNT with high oxygen content (>8.5%O) yielded uniform membrane coatings and microscopically aligned CNT, whereas CNT with low oxygen CNT (<2.2%O) produced aligned bundles visible at a macroscopic level, but microscopically the individual CNT remained disordered. Based on regression analysis, CNT with larger mean length and diameter, smaller length and diameter variation, and higher oxygen content yielded increased electrical anisotropy, and bath sonication was slightly preferable to probe sonication for initial dispersion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.