We present a novel computational framework to simulate the electromechanical response of selfsensing carbon nanotube (CNT)-based composites experiencing fracture. The computational framework combines electrical-deformation-fracture finite element modelling with a mixed micromechanics formulation. The latter is used to estimate the constitutive properties of CNT-based composites, including the elastic tensor, fracture energy, electrical conductivity, and linear piezoresistive coefficients. These properties are inputted into a coupled electro-structural finite element model, which simulates the evolution of cracks based upon phase-field fracture. The coupled physical problem is solved in a monolithic manner, exploiting the robustness and efficiency of a quasi-Newton algorithm. 2D and 3D boundary value problems are simulated to illustrate the potential of the modelling framework in assessing the influence of defects on the electromechanical response of meso-and macro-scale smart structures. Case studies aim at shedding light into the interplay between fracture and the electromechanical material response and include parametric analyses, validation against experiments and the simulation of complex cracking conditions (multiple defects, crack merging). The presented numerical results showcase the efficiency and robustness of the computational framework, as well as its ability to model a large variety of structural configurations and damage patterns. The deformation-electrical-fracture finite element code developed is made freely available to download.
We present a novel micromechanics-based phase field approach to model crack initiation and propagation in carbon nanotube (CNT) based composites. The constitutive mechanical and fracture properties of the nanocomposites are first estimated by a mean-field homogenisation approach. Inhomogeneous dispersion of CNTs is accounted for by means of equivalent inclusions representing agglomerated CNTs. Detailed parametric analyses are presented to assess the effect of the main micromechanical properties upon the fracture behaviour of CNT-based composites. The second step of the proposed approach incorporates the previously estimated constitutive properties into a phase field fracture model to simulate crack initiation and growth in CNTbased composites. The modelling capabilities of the framework presented is demonstrated through three paradigmatic case studies involving mode I and mixed mode fracture conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.