We consider transmitting a source across a pair of independent, non-ergodic channels with random states (e.g., slow fading channels) so as to minimize the average distortion. The general problem is unsolved. Hence, we focus on comparing two commonly used source and channel encoding systems which correspond to exploiting diversity either at the physical layer through parallel channel coding or This work has been presented in part at
We consider multiview video compression: the problem of jointly compressing multiple views of a scene recorded by different cameras. To take advantage of the correlation between views, we propose using disparity compensated view prediction and view synthesis and describe how these features can be implemented by extending the H.264/AVC compression standard. Finally, we discuss experimental results on the test sequences from the MPEG Call for Proposals on multiview video.
International Conference on Image ProcessingThis work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.
Abstract-In this paper, we describe and analyze the source and channel coding properties of a class of sparse graphical codes based on compounding a low-density generator matrix (LDGM) code with a low-density parity-check (LDPC) code. Our first pair of theorems establishes that there exist codes from this ensemble, with all degrees remaining bounded independently of block length, that are simultaneously optimal for both channel coding and source coding with binary data when encoding and decoding are performed optimally. More precisely, in the context of lossy compression, we prove that finite-degree constructions can achieve any pair (R; D) on the rate-distortion curve of the binary symmetric source. In the context of channel coding, we prove that the same finite-degree codes can achieve any pair (C; p) on the capacity-noise curve of the binary symmetric channel (BSC). Next, we show that our compound construction has a nested structure that can be exploited to achieve the Wyner-Ziv bound for source coding with side information (SCSI), as well as the Gelfand-Pinsker bound for channel coding with side information (CCSI). Although the results described here are based on optimal encoding and decoding, the proposed graphical codes have sparse structure and high girth that renders them well suited to message passing and other efficient decoding procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.