BackgroundInternal Jugular Veins (IJVs) are the principle outflow pathway for intracranial blood in clinostatism condition. In the seated position, IJVs collapse, while Vertebral Veins (VVs) increase the venous outflow and partially compensate the venous drainage. Spinal Epidural Veins are an additional drainage pathway in the seated position. Colour- Doppler-Sonography (CDS) examination is able to demonstrate IJVs and VVs outflow in different postural and respiratory conditions. The purpose of this study was to evaluate CDS quantification of the cerebral venous outflow (CVF) in healthy subjects and patients with multiple sclerosis (MS).Methodology/Principal FindingsIn a group of 27 healthy adults (13 females and 14 males; mean age 37.8±11.2 years), and 52 patients with MS (32 females and 20 males; mean age 42.6±12.1 years), CVF has been measured in clinostatism and in the seated position as the sum of the flow in IJVs and VVs. The difference between CVF in clinostatism and CVF in the seated position (ΔCVF) has been correlated with patients' status (healthy or MS), and a number of clinical variables in MS patients. Statistical analysis was performed by Fisher's exact test, non-parametric Mann-Whitney U test, ANOVA Kruskal-Wallis test, and correntropy coefficient.The value of ΔCVF was negative in 59.6% of patients with MS and positive in 96.3% of healthy subjects. Negative ΔCVF values were significantly associated with MS (p<0.0001). There was no significant correlation with clinical variables.Conclusions/SignificanceNegative ΔCVF has a hemodynamic significance, since it reflects an increased venous return in the seated position. This seems to be a pathologic condition. In MS patients, a vascular dysregulation resulting from involvement of the autonomous nervous system may be supposed. ΔCVF value should be included in the quantitative CDS evaluation of the cerebral venous drainage, in order to identify cerebral venous return abnormalities.
Occipital neuralgia may be related to traumatic, compressive, or inflammatory injury to the occipital nerve or C2 radicular level and cervical spinal cord lesions. We report a series of 3 patients with definite relapsing-remitting multiple sclerosis (MS) who experienced sudden occipital neuralgiform pain with or without diminished sensation in the cervical region and associated with magnetic resonance imaging (MRI) evidence of a new active or new T2-weighted demyelinating C2 cervical lesion. We suggest that sudden paroxysmal occipital pain may signal relapse of MS and cervical MRI with gadolinium should be considered; these patients show good clinical response to high-dose intravenous corticosteroids.
Literature has suggested that changes in brain flow circulation occur in patients with multiple sclerosis. In this study, digital subtraction angiography (DSA) was used to measure the absolute CCT value in MS patients and to correlate its value to age at disease onset and duration, and to expand disability status scale (EDSS). DSA assessment was performed on eighty MS patients and on a control group of forty-four age-matched patients. CCT in MS and control groups was calculated by analyzing the angiographic images. Lesion and brain volumes were calculated in a representative group of MS patients. Statistical correlations among CCT and disease duration, age at disease onset, lesion load, brain volumes and EDSS were considered. A significant difference between CCT in MS patients (mean = 4.9s; sd = 1.27s) and control group (mean = 2.8s; sd = 0.51s) was demonstrated. No significant statistical correlation was found between CCT and the other parameters in all MS patients. Significantly increased CCT value in MS patients suggests the presence of microvascular dysfunctions, which do not depend on clinical and MRI findings. Hemodynamic changes may not be exclusively the result of a late chronic inflammatory process.
This molecular analysis expands the mutational spectrum of SLC20A2, which remains the major causative gene of primary familial brain calcification, and suggests the existence of disease-causing mutations in at least another, still unknown gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.