In addition to inhibition of the Na-K ATPase, ouabain activates a signal transduction function, triggering growth and proliferation of cultured cells even at nanomolar concentrations. An isomer of ouabain (EO) circulates in mammalians at subnanomolar concentrations, and increased levels are associated with cardiac hypertrophy and hypertension. We present here a study of cardiac and renal hypertrophy induced by ouabain infused into rats for prolonged periods and relate this effect to the recently described ouabain-induced activation of the Src-EGFr-ERK signaling pathway. Ouabain infusion into rats (15 g/kg/day for 18 weeks) doubled plasma ouabain levels from 0.3 to 0.7 nM and increased blood pressure by 20 mm Hg (p < 0.001), cardiac left ventricle (؉11%, p < 0.05), and kidney weight (؉9%, p < 0.01). These effects in vivo are associated with a significant enrichment of ␣1, 1, ␥a Na-K ATPase subunits together with Src and EGFr in isolated renal caveolae membranes and activation of ERK1/2. In caveolae, direct Na-K ATPase/Src interactions can be demonstrated by co-immunoprecipitation. The interaction is amplified by ouabain, at a high affinity binding site, detectable in caveolae but not in total rat renal membranes. The high affinity site for ouabain is associated with Src-dependent tyrosine phosphorylation of rat ␣1 Na-K ATPase. The antihypertensive compound, PST 2238, antagonized all ouabain-induced effects at 10 g/kg/day in vivo or 10 ؊10 -10 ؊8 M in vitro. These findings provide a molecular mechanism for the in vivo pro-hypertrophic and hypertensinogenic activity of ouabain, or by analogy those of EO in humans. They also explain the pharmacological basis for PST 2238 treatment.Until recently, the main, if not unique, function ascribed to the integral membrane protein Na-K ATPase is the maintenance and regulation of the electrochemical gradient across the cell membrane in all tissues (1). Ouabain and other steroidal cardenolides (2) or bufadienolides (3) are considered to be the specific inhibitors of the Na-K ATPase activity. However, in recent years, several studies have indicated that Na-K ATPase can also act as a signal transducer in response to the interaction with its natural ligand ouabain (4). This finding originates mainly from studies carried out on cultured rat cardiomyocytes or renal tubular cells based on effects on cell growth and hypertrophy of ouabain in the micromolar range. At these rather high concentrations, which, however, do not seem to affect the bulk intracellular Na ϩ and Ca 2ϩ concentrations (5), ouabain activates: (a) tyrosine phosphorylation of the epidermal growth factor receptor (EGFr), 1 Src, and p42/44 mitogenactivated protein kinase (MAPKs) in both neonatal rat cardiac myocytes and A7r5 cells (4, 6); (b) the same signaling pathway within the cellular membrane microdomain of caveolae in isolated perfused rat heart (7); and (c) slow intracellular Ca 2ϩ oscillations in rat tubular cells that favor the association of Na-K ATPase with the inositol 1,4,5-trisphosphate receptor (InsP 3 ...
Ouabainlike factor (OLF) has been extracted from the hypothalamus and adrenals of the ox and rats of the Milan hypertensive strain (MHS) and their normotensive controls (MNS). OLF was identified by its ability to 1) inhibit ouabain-sensitive 86Rb uptake into human erythrocytes, 2) displace [3H]ouabain binding, and 3) inhibit purified dog kidney Na-K-adenosinetriphosphatase (ATPase). Rat and bovine OLF have similar characteristics. Those that are close to ouabain are 1) ligand conditions for maximal inhibitory activity, 2) high-performance liquid chromatography retention time, 3) reversibility of inhibitory activity on Na-K-ATPase, 4) reduced Na-K pump inhibitory activity by K, 5) high affinity for Na-K-ATPase, and 6) no activity on calcium ATPase. OLF does not resemble ouabain in the following characteristics: 1) the capacity of OLF to inhibit ouabain low-affinity Na-K-ATPase isoform is greater than that of ouabain and 2) the capacity of OLF to inhibit renal Na-K-ATPase isoforms is greater when the enzyme is obtained from adult rather than young rats. The yield of OLF is greater from MHS than MNS. These findings represent the first direct evidence that a higher amount of OLF is present in tissues from genetically hypertensive rats than from their inbred normotensive controls, maintained under the same dietary and environmental conditions. This further supports previous observations on the role of OLF in the pathogenesis of MHS hypertension.
PST 2238 is a new antihypertensive compound that is able to correct the molecular and functional alterations of the renal Na-K pump and the pressor effect associated with either alpha-adducin mutations or high circulating levels of endogenous ouabain (EO) in genetic and experimental rat models. Due to the close relationship between renal Na-K pump function and tubular Na reabsorption, PST 2238 was investigated to determine whether it is endowed with diuretic activity and consequently might trigger alterations of the renin-aldosterone system and the carbohydrate and lipid metabolism often associated with chronic diuretic therapy. In Milan hypertensive (MHS) rats, in which hypertension is genetically associated with alpha-adducin mutation, increased tubular Na reabsorption, and hyperactivation of the renal Na-K pump. PST 2238 reduced blood pressure and normalized the renal Na-K pump activity at oral doses of micro g/kg, but did not induce, either acutely or chronically, any diuretic activity or hormonal or metabolic alterations. In contrast, HCTZ, given to MHS rats orally at 40 mg/kg, although it displayed diuretic activity and reduced the renal Na-K pump activity, did not lower blood pressure and caused hyperactivation of the renin-aldosterone system, hypokaliemia, and hyperglycemia. The findings lead to the conclusion that PST 2238 is a new antihypertensive compound that normalizes the altered function of the renal Na-K pump associated with hypertension in rat models, but that it is devoid of diuretic activity and does not induce the diuretic-associated side effects.
A primary impairment of the kidney sodium excretion has been documented both in hypertensive patients (EH) and genetic animal models (Milan hypertensive rat [MHS]) carrying mutations of the cytoskeletal protein adducin and/or increased plasma levels of endogenous ouabain (EO). Ouabain (OU) itself induces hypertension in rats and both OU and mutated adducin activate the renal Na/K-ATPase function both in vivo and in cultured renal cells (NRK). A new antihypertensive agent, PST 2238, able to selectively interact with these alterations has been developed. PST lowers blood pressure (BP) by normalizing the expression and activity of the renal Na-K pump selectively in those rat models carrying the adducin mutation (MHS) and/or increased EO levels (OS) at oral doses of 0.1-10 micro g/kg. In NRK cells either transfected with mutated adducin or incubated with 10(-9) M OU, PST normalizes the Na-K pump activity. Recently, an association between EO and cardiac complications has been observed in both EH and rat models consistent with a prohypertrophic activity of OU. OS rats showed a 10% increase of left ventricle and kidney weights as compared with controls, and PST 2238 (1 micro g/kg OS) prevented both ventricle and renal hypertrophy. This effect was associated with the ability of PST to antagonize the OU-dependent activation of growth-related genes, in the membrane subdomains of caveolae. In conclusion, PST is a new antihypertensive agent that may prevent cardiovascular complications associated with hypertension through the selective modulation of the Na-K pump function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.