We propose a method of constructing a system of boundary integral equations for the problem of the stress state of an orthotropic shell with slits and holes. Using the theory of distributions and the twodimensional Fourier transform, we reduce the problem to a system of boundary integral equations. In the solution obtained the kernels of the system of integral equations do not contain the direction cosines of the unit outward normal vector explicitly. There are no extra-integral terms. The matrix of the kernels is symmetric. The kernels are regular or have a logarithmic singularity. Two figures. Bibliography: 6 titles.
Работа посвящена определению напряженно-деформированного состояния изотропной оболочки произвольной гауссовой кривизны с круговым отверстием, расположенным в центре конструкции. Оболочка находится под действием осевого растяжения или внутреннего давления. Использовались уравнения теории пологих изотропных оболочек, которые совпадают с уравне-ниями теории изотропных оболочек с большим показателем изменяемости. Были задействованы интегральное преобразование Фурье, теория обобщенных функций. В результате задача сведе-на к решению системы граничных интегральных уравнений. Одно из преимуществ использования метода граничных интегральных уравнений для исследования напряженно-деформированного состояния оболочек, ослабленных отверстием, состоит в возможности определять искомые ве-личины непосредственно на контуре отверстия, не вычисляя их на всей поверхности оболочки. Для получения ядер сингулярных интегральных уравнений были использованы интегральные представления перемещений и фундаментальные решения уравнений статики пологих изотроп-ных оболочек. В качестве неизвестных функций использовались комбинации перемещений, углов поворота и их производных. Аналитические выкладки существенно упрощаются, если считать неизвестными на контуре не четыре функции, как это принято, а пять. В данной работе в качест-ве пятого уравнения используется дифференциальное уравнение, связывающее неизвестные функции. При численном решении задачи для сведения системы интегральных уравнений к сис-теме линейно-алгебраических уравнений использовались специальные квадратурные формулы для интегралов типа Коши, если неизвестные функции имели корневую особенность на концах промежутка интегрирования. Для сведения дифференциального уравнения к линейно-алгебраическому уравнению использовался метод конечных разностей. Приведены результаты значений коэффициентов концентрации напряжений в зависимости от кривизны изотропной обо-лочки. Также было произведено сравнение результатов с другими исследователями.Ключевые слова: круговое отверстие, изотропная оболочка, мембранные напряжения, преобразование Фурье, метод граничных интегральных уравнений. Влияние кругового отверстия на напряженное состояние оболочки гауссовой кривизны 109 E.N. Dovbnya, N.A. KrupkoDonetsk National University, Donetsk, Ukraine INFLUENCE OF CIRCULAR HOLE ON THE SHELL STRESS STATE FOR ARBITRARY GAUSSIAN CURVATUREThe work is devoted to determining isotropic shell of stress-strain state for arbitrary Gaussian curvature with a circular hole, located in the center of the structure. An axial tension or an internal pressure is applied to the surface of the shell. The isotropic shallow shell theory equations were used, which coincide with the isotropic shell theory equations with a large measure of variability. The integral Fourier transformation and the theory of generalized functions were applied. As a result the problem was reduced to solving the system of boundary integral equations. One benefit of using the method of boundary integral equations for the study of shell stress-strain state weakene...
The interaction of through, surface, and internal cracks in shells of arbitrary curvature is examined. Crack of the same and different types with various geometry are considered. The curvature of the shell, the length and depth of the cracks, their arrangement and distance between them have a strong effect on the stress intensity factors for part-through cracks and on the force and moment intensity factors for through cracks Keywords: shell of arbitrary curvature; through, surface, and internal cracks; SIF; systems of singular integral equationsIntroduction. Shell structures often have surface or internal defects (cracks, inclusions, notches, etc.) of various geometry. In design models, defects are usually modeled by fictitious cuts. Note that the problem of stress distribution around a part-through crack of even perfect shape is three-dimensional, solving which involves severe mathematical difficulties. Such problems are usually solved with approximate methods. In particular, the line-spring model makes it possible to reduce the dimension of such problems by one, and it remains possible to model the depth profile of part-through cracks.The line-spring model helped to analyze the stress state of many isotropic plates and shells with surface and internal cracks [1,[12][13][14]. Cylindrical and spherical shells with longitudinal and transverse surface cracks are addressed in [7][8][9]. The stress state of a shell of arbitrary curvature with surface cracks of different length was first determined in [2,3]. Shells of arbitrary curvature with an internal crack and with a set of through and surface cracks oriented along both lines of principal curvatures are studied in [4-6].We will consider shells of arbitrary curvature weakened by cracks of different type and geometry oriented along both lines of principal curvatures.1. Problem Formulation Based on the Line-Spring Model. Consider a thin elastic isotropic shell of arbitrary Gaussian curvature and constant thickness h. We choose a system of orthogonal coordinates Oxyz so that the x-and y-axes are directed along the lines of principal curvatures of the shell's mid-surface, while the z-axis is directed along the normal to it. The shell is weakened by n through and part-through (surface or internal) cracks oriented along both lines of principal curvatures and is subjected to a symmetric external load.It is assumed that the crack faces are free from load and do not contact with each other during deformation.To solve the problem, we will use the line-spring model developed by Rice and Levy [14] to study an elastic plate with a surface crack. The main hypotheses that underlie the model were later generalized by Erdogan to a plate with internal crack [1,12].The tensile force and bending moment acting on the shell induce stresses in the interlayer at the front of the nth part-through crack. These stresses are described by unknown forces T p ( ) and moment M p ( ) in the line-spring model. After the introduction of T p ( ) and M p ( ) , we can regard the crack as a through one...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.