The concept of digitalization of agricultural production in the Russian Federation provides for the implementation of measures to develop and create a system of geographic information monitoring and decision support in crop production. The aim of the research was to conduct geoinformation monitoring of rice crops to develop methods for automated mapping of their condition and yield forecasting. The studies were carried out on a test site of the Federal State Budgetary Scientific Institution “Federal Scientific Rice Centre” with an area of 274 hectares. The survey was performed by a quadcopter with a MicaSense RedEdge-M multispectral camera mounted on a fixed suspension. The shooting period using an unmanned aerial vehicle (UAV) was limited to early June and additionally used the Sentinel-2A satellite. To assess the state of rice crops, the normalized relative vegetative index NDVI was used. Based on the NDVI distribution and yield information from the combine TUCANO 580 (CLAAS), a statistical analysis was carried out in fields 7 and 9. Testing of the experimental methodology for monitoring crops in 2019 on the basis of remote sensing of test plots and geoinformation modeling and the statistical apparatus should be considered satisfactory.
Assessment of the potential of wind energy in the Krasnodar region obtained by mapping the wind speed at the height of 50, 80 and 100 meters. The technique of modeling, based on the global experience of assessing the potential of wind energy, including data on the average annual wind speed at the meteorological network and estimates of surface roughness . The algorithm for automated mapping.Введение. Постановка проблемы. Ветровая энергетика -одно из ключевых направлений современной мировой энергетики. Рост вклада возобновляемых источников энергии (ВИЭ) в глобальное потребление энергии определяется рядом обстоятельств, из которых выделим неуклонное потребление энергии в мире, конечность традиционных видов топлива, поиск экологически безопасных источников энергии, стремление многих стран и регионов к энергетической безопасности. Во многих европейских странах (Германия, Испания, Дания, Португалия, Ирландия и др.) в результате роста инвестиций в ветроэнергетику, сопровождаемого последовательным увеличением мощностей энергоустановок, абсолютный вклад ВИЭ в потребление энергии неуклонно растет.На огромной территории России ресурсы ветроэнергетики распределены крайне неравномерно, поэтому ее экономическая эффективность в значительной мере зависит от местных условий. Краснодарский край -энергодефицитный регион с централизованным энергоснабжением, в котором остро стоит проблема региональной энергетической безопасности. Степень использования ВИЭ в энергобалансе края не превышает 2%.Эффективный способ решения проблемы энергетической безопасности -развитие региональной альтернативной энергетики. В Краснодарском крае априори имеются благоприятные географические предпосылки для этого. Очевидно, что развитие автономной и распределенной энергетики с использованием ВИЭ в ближайшие годы во многом будет определяться инициативой региональных властей, а также частного бизнеса. Всестороннее исследование пространственно распределенной ветровой энергии как природного возобновляемого ресурса и оценка перспектив ее использования на территории Краснодарского края ранее детально не проводились. По данным [2] на территории края запасы потенциальной энергии ветра в десятки раз меньше запасов потенциальной энергии солнца, однако целесообразна совместная утилизация солнечноветровых ресурсов, обеспечивающая стабильность вырабатываемой суммарной энергии в течение года. В этой связи необходима оценка региональных ветровых ресурсов в аспекте развития энергетики, нахождение ее места в региональном энергетическом комплексе, что и является задачей настоящей работы.Мощность турбин современных ветрогенераторов достигает 1,0…3,0 Мвт, при этом она постоянно растет. Ветроэнергетическая установка высотой более 50 м -это сложное инженерное сооружение с развитой инфраструктурой, эффективная работа которой в значительной мере зависит от правильного расчета потенциала ветровой энергии. Завышенная при расчетах скорость ветра (и турбины) способствует снижению эффективности; заниженная скорость ветра при определении потенциала приводит к чрезмерным нагрузкам и пов...
The article considers the long-term transformation of the Krasnodar valley reservoir, the largest in the North Caucasus. The main functions of the Krasnodar reservoir are irrigation of rice systems and flood protection of land in the Krasnodar reservoir region and the Republic of Adygea. According to topographic maps, Landsat satellite images and field observations (2016)(2017)(2018), four stages of transformation of the floodplain reservoir are identified. The selected stages are characterized by both natural causes (the transformation of the filling deltas into the extended deltas, etc.) and man-made causes (runoff diversions in the delta areas, etc.). The key factor of transformation is the formation of deltas of rivers flowing into the reservoir. Each of the selected stages, against the background of a gradual reduction in the area and volume of the reservoir, is characterized by the peculiarities of the formation of river deltas with the formation of genetically homogeneous sections of delta regions. During the period of operation of the reservoir, the delta of the main Kuban River moved up to 32.4 km and took away an area of 35.4 km 2 of the reservoir. During the formation of the deltas of the Kuban and Belaya rivers, a bridge was formed on the Krasnodar reservoir. The evolution of the delta regions led to the division of the reservoir into two autonomous reservoirs. The total area of the delta regions was 85.9 km 2 by 2018, i.e., 21% of the initial area of the reservoir. The transformation of the Krasnodar reservoir leads to a decrease in its regulated volume and gradual degradation.
In the Krasnodar territory, agricultural land occupies 62 % of the territory; of which 79 % is arable land. Most of the agricultural land is located on the Azov-Kuban Plain in the northern part of the region in the steppe river basins. The basin of the Beysug river with an area of about 6,000 km2, in terms of its geographical characteristics, should be attributed to representative basins from the standpoint of the modern dynamics of agricultural landscapes and transformations of the river network. The article analyzes the changes in the steppe agricultural landscapes in the Beysug river basin for the period 1999–2020 in terms of changes in the structure of land use and hydrographic characteristics, based on the data of satellite images. The transformation of agrolandscapes is accompanied by redevelopment of the territory, massive construction of dams on rivers, violation of the conditions of natural drainage, which leads to the restructuring of water exchange processes in river basins. Changes in water exchange processes under semi-arid conditions can be sensitive to local landscapes and agriculture. Until now, insufficient attention has been paid to the hydrological aspects of the transformation of steppe landscapes. According to the DEM ASTER GDEM, 15 river basins were identified with the subsequent determination of land use types on the surface of the basins. In each of the basins, a land use structure has been established, which directly affects the hydrographic indicators, and a decrease in the length of watercourses and the density of the river network has been revealed. Over the past 20 years, in the studied basins, the total length of watercourses due to plowing and redevelopment of the surface has decreased by 8–37 %, and in general in the Beysug river basin—by 469 km.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.