Emission of high-order harmonics from solids provides a new avenue in attosecond science. On the one hand, it allows us to investigate fundamental processes of the nonlinear response of electrons driven by a strong laser pulse in a periodic crystal lattice. On the other hand, it opens new paths toward efficient attosecond pulse generation, novel imaging of electronic wave functions, and enhancement of high-order harmonic-generation (HHG) intensity. A key feature of HHG in a solid (as compared to the well-understood phenomenon of HHG in an atomic gas) is the delocalization of the process, whereby an electron ionized from one site in the periodic lattice may recombine in any other. Here, we develop an analytic model, based on the localized Wannier wave functions in the valence band and delocalized Bloch functions in the conduction band. This Wannier-Bloch approach assesses the contributions of individual lattice sites to the HHG process and hence precisely addresses the question of localization of harmonic emission in solids. We apply this model to investigate HHG in a ZnO crystal for two different orientations, corresponding to wider and narrower valence and conduction bands, respectively. Interestingly, for narrower bands, the HHG process shows significant localization, similar to harmonic generation in atoms. For all cases, the delocalized contributions to HHG emission are highest near the band-gap energy. Our results pave the way to controlling localized contributions to HHG in a solid crystal
We describe dynamics of spin and valley transitions driven by alternating electric fields in quantum dots defined electrostatically within semiconducting carbon nanotubes (CNT). We use the tight-binding approach to describe the states localized within a quantum dot taking into account the circumferential spin-orbit interaction due to the s-p hybridization and external fields. The basis of eigenstates localized in the quantum dot is used in the solution of the time-dependent Schrödinger equation for description of spin flips and intervalley transitions that are driven by periodic perturbation in the presence of coupling between the spin, valley, and orbital degrees of freedom. Aside from the first-order transitions, we find also fractional resonances. We discuss the transition rates with selection rules that are lifted by atomic disorder and the bend of the tube. We demonstrate that the electric field component perpendicular to the axis of the CNT activates spin transitions which are otherwise absent and that the resonant spin-flip time scales with the inverse of the electric field.
We consider spin rotations in single-and two-electron quantum dots that are driven by external AC electric field with two mechanisms that couple the electron spatial motion and the spin degree of freedom: the spin-orbit interaction and a random fluctuation of the Overhauser field due to nuclear spin bath. We perform a systematic numerical simulation of the driven system using a finite difference approach with an exact account taken for the electron-electron correlation. The simulation demonstrates that the electron oscillation in fluctuating nuclear field is translated into an effective magnetic field during the electron wave packet motion. The effective magnetic field drives the spin transitions according to the electric-dipole spin resonance mechanism. We find distinct signatures of selection rules for direct and higher-order transitions in terms of the spin-orbital symmetries of the wave functions. The selection rules are violated by the random fluctuation of the Overhauser field.
We provide an atomistic tight-binding description of a few carriers confined in ambipolar (n-p) double quantum dots defined in a semiconducting carbon nanotube. We focus our attention on the charge state of the system in which Pauli blockade of the current flow is observed [F. Pei et al., Nat. Nanotechnol. 7, 630 (2012); E. A. Laird et al., ibid 8, 565 (2013)] with a single excess electron in the n-dot and a single hole in the p-dot. We use the configuration interaction approach to determine the spin-valley structure of the states near the neutrality point and discuss its consequences for the interdot exchange interaction, the degeneracy of the energy spectrum and the symmetry of the confined states. We calculate the transition energies lifting the Pauli blockade and analyze their dependence on the magnetic field vector. Furthermore, we introduce bending of the nanotube and demonstrate its influence on the transition energy spectra. The best qualitative agreement with the experimental data is observed for nanotubes deflected in the gated areas in which the carrier confinement is induced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.