We investigate the impact of tin doping on the formation of vacancy-oxygen pairs (VO or A-centers) and their conversion to VO 2 clusters in electron-irradiated silicon. The experimental results are consistent with previous reports that Sn doping suppresses the formation of the A-center. We introduce a model to account for the observed differences under both Sn-poor and Sn-rich doping conditions. Using density functional theory calculations, we propose point defect engineering strategies to reduce the concentration of the deleterious A-centers in silicon. We predict that doping with lead, zirconium, or hafnium will lead to the suppression of the A-centers.
Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.
Electronic structure calculations employing hybrid functionals are used to gain insight into the interaction of carbon (C) atoms, oxygen (O) interstitials, and self-interstitials in silicon (Si). We calculate the formation energies of the C related defects Ci(SiI), CiOi, CiCs, and CiOi(SiI) with respect to the Fermi energy for all possible charge states. The Ci(SiI)2+ state dominates in almost the whole Fermi energy range. The unpaired electron in the CiOi+ state is mainly localized on the C interstitial so that spin polarization is able to lower the total energy. The three known atomic configurations of the CiCs pair are reproduced and it is demonstrated that hybrid functionals yield an improved energetic order for both the A and B-types as compared to previous theoretical studies. Different structures of the CiOi(SiI) cluster result for positive charge states in dramatically distinct electronic states around the Fermi energy and formation energies.
Density functional theory employing hybrid functional is used to gain fundamental insight into the interaction of vacancies with oxygen interstitials to form defects known as A-centers in silicon. We calculate the formation energy of the defect with respect to the Fermi energy for all possible charge states. It is found that the neutral and doubly negatively charged A-centers dominate. The findings are analyzed in terms of the density of states and discussed in view of previous experimental and theoretical studies.
We investigate the impact of isovalent (in particular lead (Pb)) doping on the production and thermal stability of the vacancy-related (VO) and the interstitial-related (C i O i and C i C s) pairs in 2 MeV electron irradiated Si samples. We compare the Cz-Si samples with high and low carbon concentration, as well as with Pb-C and Ge-C codoped samples. Using Fourier Transform Infrared Spectroscopy (FTIR), we first determine that under the examined conditions the production of VO decreases with the increase of the covalent radius of the prevalent dopant. Moreover, the production of the VO, C i O i , and C i C s pairs is quite suppressed in Pb-doped Si. In addition, we conclude to an enhanced trapping of both C i and C s by Pb impurity under irradiation. The results are further discussed in view of density functional theory calculations. The relative thermodynamic stability of carbon and interstitial related complexes was estimated through the calculations of binding energies of possible defect pairs. This allows to investigate the preferred trapping of vacancies in Pb-doped samples and interstitials in the Ge-doped samples. The different behavior is revealed by considering the analysis of the ratio of vacancy-related to interstitial-related clusters derived from the FTIR measurements. The presence of PbV complexes is confirmed due to the mentioned analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.