In the present work, multiwalled carbon nanotube (MWCNT) chemically modified with (3-mercaptopropyl) silanetriolate is efficiently used for the solid-phase extraction of Cu(2+), Ag(+), Cd(2+), Pb(2+), Zn(2+) and Mn(2+) ions prior to their flame atomic absorption spectrometric determination. The influences of the various analytical parameters, including pH, amounts of solid phase, sample volume and eluent conditions and so on, on the recoveries of target analytes were investigated and optimized by one at a time optimization method. The influences of alkaline, alkaline earth and some transition metals on the adsorption and elution of the analytes were also examined. The detection limits for all understudied metal ions were between 1.4 and 2.8 ng mL(-1) (3Sb, n = 10). The evaluation of the thermodynamic parameters such as enthalpy (positive value), Gibbs free energy (negative value) in addition to high value of entropy shows the endothermic and spontaneous nature of sorption process. Following the optimization of variables, the adsorption process follows the intraparticle kinetic model with R (2) of 0.98 and the Langmuir isotherm with high correlation coefficient (R (2) > 0.95). The procedure was applied for the analytes determination in the food samples with satisfactory results (recoveries >95% and relative standard deviation's (RSD) lower than 4%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.