Power system stability is enhanced through a novel stabilizer developed around an adaptive fuzzy sliding mode approach which applies the Nussbaum gain to a nonlinear model of a single-machine infinite-bus (SMIB) and multi-machine power system stabilizer subjected to a three phase fault. The Nussbaum gain is used to avoid the positive sign constraint and the problem of controllability of the system. A comparative simulation study is presented to evaluate the achieved performance.
A new, adaptive, fuzzy type-2 fast terminal, synergetic multi-machine power system stabilizer is proposed in this study, based on the Bat algorithm. The time spent to reach the equilibrium point, from any initial state, is guaranteed to be finite. The adaptive fuzzy type-2 design is applied to estimate the unknown functions of a multi-machine power system. The parameters of the fast terminal synergetic control are optimized, using bat metaheuristic method. In order to test the robustness of the proposed stabilizer, three load conditions, of the multi-machine power system are studied. A comparison of the proposed adaptive fuzzy type-2 synergetic power system stabilizer with bat conventional approach is presented, indicating improved performance. The control system stability is assessed by the second theorem of Lyapunov and is proven to be asymptotically stable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.