Aurora-B is a component of the Chromosomal Passenger Complex (CPC) required for correct spindle-kinetochore attachments during chromosome segregation and for cytokinesis. The chromatin factors that recruit the CPC to centromeres are unknown, however. Here we show that phosphorylation of Histone-H3 Thr-3 (H3T3ph) by Haspin is necessary for CPC accumulation at centromeres, and that the CPC subunit Survivin binds directly to H3T3ph. A non-binding Survivin-D70A/D71A mutant does not support centromeric CPC concentration and both Haspin depletion and Survivin-D70A/D71A mutation diminish centromere localization of MCAK and mitotic checkpoint signaling in taxol. Survivin-D70A/D71A mutation and microinjection of H3T3ph-specific antibody both compromise centromeric Aurora-B functions but do not prevent cytokinesis. Therefore, H3T3ph generated by Haspin positions the CPC at centromeres to regulate selected targets of Aurora-B during mitosis.
Metals have crucial roles in many physiological, pathological, toxicological, pharmaceutical, and diagnostic processes. Proper handling of metal-containing macromolecule samples for structural studies is not trivial, and failure to handle them properly is often a source of irreproducibility caused by issues such as pH changes, incorporation of unexpected metals, or oxidization/reduction of the metal. This protocol outlines the guidelines and best practices for characterizing metal-binding sites in protein structures and alerts experimenters to potential pitfalls during the preparation and handling of metal-containing protein samples for X-ray crystallography studies. The protocol features strategies for controlling the sample pH and the metal oxidation state, recording X-ray fluorescence (XRF) spectra, and collecting diffraction data sets above and below the corresponding metal absorption edges. This protocol should allow experimenters to gather sufficient evidence to unambiguously determine the identity and location of the metal of interest, as well as to accurately characterize the coordinating ligands in the metal binding environment within the protein. Meticulous handling of metal-containing macromolecule samples as described in this protocol should enhance experimental reproducibility in biomedical sciences, especially in X-ray macromolecular crystallography. For most samples, the protocol can be completed within a period of 7-190 d, most of which (2-180 d) is devoted to growing the crystal. The protocol should be readily understandable to structural biologists, particularly protein crystallographers with an intermediate level of experience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.