One key step of the industrial development of a tidal energy device is the testing of scale prototype devices within a controlled laboratory environment. At present, there is no available experimental protocol which addresses in a quantitative manner the differences which can be expected between results obtained from the different types of facilities currently employed for this type of testing. As a consequence, where differences between results are found it has been difficult to confirm the extent to which these differences relate to the device performance or to the test facility type.In the present study, a comparative "Round Robin" testing programme has been conducted as part of the EC FP VII MaRINET program in order to evaluate the impact of different experimental facilities on the test results. The aim of the trials was to test the same model tidal turbine in four different test facilities to explore the sensitivity of the results to the choice of facility. The facilities comprised two towing tanks, of very different size, and two circulating water channels.Performance assessments in terms of torque, drag and inflow speed showed very similar results in all facilities. However, expected differences between the different tank types (circulating and towing) were observed in the fluctuations of torque and drag measurements. The main facility parameters which can influence the behaviour of the turbine were identified; in particular the effect of blockage was shown to be significant in cases yielding for high thrust coefficients, even at relatively small blockage ratios.
Modelling and understanding the motion of water filled floating objects is important for a wide range of applications including the behaviour of ships and floating platforms. Previous studies either investigated only small movements or applied a very specific (ship) geometry. The presented experiments are conducted using the simplified geometry of an open topped hollow cylinder ballasted to different displacements. Regular waves are used to excite the floating structure, which exhibits rotation angles of over 20 degrees and a heave motion double that of the wave amplitude. Four different drafts are investigated, each with two different ballast options: with (water) and without (solid) a free surface. The comparison shows a small difference in the body’s three translational motions as well as the rotation around the normal axis to the water surface. Significant differences are observed in the rotation about the wave direction comparable to parametric rolling as seen in ships. The three bigger drafts with free surface switch the dominant global rotation direction from pitch to roll, which can clearly be attributed to the sloshing of the internal water. The presented study provides a new dataset and comparison of varying ballast types on device motions, which may be used for future validation experiments.
This paper documents large laboratory-scale measurements of hydrodynamic force time histories on a realistic 1:80 scale space-frame jacket structure exposed to combined waves and in-line current. The aim is to investigate the fluid flow (and the associated hydrodynamic force) reduction relative to ambient fluid flow due to the presence of the jacket structure as an obstacle array, interpreted as wave-current blockage. Transient focussed wave groups, and embedded wave groups in a smaller regular wave background are generated in a towing tank, and the jacket is towed under different speeds opposite to the wave direction to simulate wave loading with different in-line uniform currents. The measurements are compared with numerical predictions using Computational Fluid Dynamics (CFD), with the actual jacket represented in a three-dimensional numerical wave tank as a porous tower modelled as a uniformly distributed Morison stress field. Good agreement is achieved, both in terms of incident surface elevation as well as total force time histories, all using a single set of Morison drag (C d) and inertia (C m) coefficients. Substantial force reduction is observed under transient large crest relative to prediction from the present industry design guideline with the same Morison coefficients. We demonstrate the generality of our findings: without influence of Keulegen-Carpenter (KC) number effect, a single invariant set of C d and C m is all that is required to numerically explain and reproduce the measured total force time histories on a realistic jacket model for a large range of wave heights and non-zero current speeds.
The experimental set-up allows for the comparison of two different ballast options of a floating cylinder in a wave tank. Four different internal water drafts are tested as well as an equivalent solid ballast option. The model is excited by regular waves, which are characterised with five wave gauges in front of the floating cylinder and two behind. Additionally, the time series of the six-degree freedom response of the floating structure is made available. Regular waves with an initial amplitude of 0.05 m and frequencies over the range 0.3 to 1.1 Hz are investigated. This results in a wide range of different responses of the floating structure as well as very big rotations of up to 20 degrees. This dataset allows for identification of the influence caused by the sloshing of the interior water volume and can be used to validate numerical models of fluid–structure–fluid interaction.
This paper documents large laboratory-scale measurements of hydrodynamic force time histories on a realistic 1:80 scale space-frame jacket structure, which is allowed to respond dynamically when exposed to combined waves and in-line current. This is a follow-on paper to Santo, Taylor, Day, Nixon and Choo (2018a) which used the same jacket structure but very stiffly supported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.