Whether organic nitrates are bioactivated to NO in cardiac muscle cells and may thus directly affect cardiac contractile function has remained an open question. Therefore, we determined the effects of the organic nitrates glyceryl trinitrate (100 mumol/L), pentaerythritol tetranitrate (10 mumol/L), and isosorbide-5-mononitrate on electrically stimulated contractile response (CR) and cAMP and cGMP content of isolated adult rat ventricular cardiomyocytes compared with different concentrations of the spontaneous NO donors S-nitroso-N-acetyl-d,1-penicillamine (SNAP) and 2,2-diethyl-1-hydroxy-1-nitroso-hydrazine (DEA/NO). A high concentration of spontaneous NO donors (100 mumol/L caused a large increase in cGMP content that was accompanied by a decrease in CR to 73.8 +/- 6.7% (SNAP) and 80.9 +/- 6.1% (DEA/NO) of the control values. Inhibition of cGMP-dependent protein kinase by 10 mumol/L KT 5822 converted this effect into a pronounced improvement of CR (163.5 +/- 14.0%) By contrast, the organic nitrates caused a small but significant increase in cGMP, which was accompanied by an increase in cAMP and CR identical to that induced by 10 nmol/L isoprenaline (141.6 +/- 6.4%) A similar effect was observed with a low concentration (1 mumol/L of SNAP and DEA/NO. All increases in CR induce by nitrates were abolished after inhibition of cAMP-dependent protein kinase by Rp-cAMPS (10 mumol/L). The positive contractile effect of isoprenaline was enhanced by 1 mumol/L SNAP. This effect was also demonstrated in isolated rat papillary muscles. These results indicate that in cardiac muscle (1) organic nitrate are bioactivated to NO; (2) this results in a moderate increase in cGMP, which causes an improved CR by increasing cAMP and activating cAMP-dependent protein kinase; and (3) a large increase in cGMP, produced by high doses of NO donors, reduces CR because of the activation of CGMP-dependent protein kinase.
Endothelial cells (EC) contribute to the control of local vascular diameter by formation of an endothelium derived relaxant factor (EDRF) (1). Whether nitric oxide (NO) is identical with (EDRF) or might represent only one species of several EDRFs has not been decided as yet (2-5). Therefore, we have directly compared in cultured EC the kinetics of NO formation determined in a photometric assay with the vasodilatory effect of EDRF and NO in a bioassay. Basal release of NO was 16, 4 pmol/min/ml packed EC column. After stimulation with bradykinin (BK) and ATP onset of endothelial NO release and maximal response preceded the EDRF-mediated relaxation. Concentrations of NO formed by stimulated EC were quantitatively sufficient to fully explain the smooth muscle relaxation determined in the bioassay. Our data provide convincing evidence that under basal, BK and ATP-stimulated conditions 1. endothelial cells release nitric oxide as free radical, 2. nitric oxide is solely responsible for the vasodilatory properties of EDRF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.