Quantitative temperature‐modulated differential scanning calorimetry (TMDSC) and superfast thin‐film chip calorimetry (SFCC) are applied to poly(butylene terephthalate)s (PBT) of different thermal histories. The data are compared with those of earlier measured heat capacities of semicrystalline PBT by adiabatic calorimetry and standard DSC. The solid and liquid heat capacities, which were linked to the vibrational and conformational molecular motion, serve as references for the quantitative analyses. Using TMDSC, the thermodynamic and kinetic responses are separated between glass and melting temperature. The changes in crystallinity are evaluated, along with the mobile–amorphous and rigid–amorphous fractions with glass transitions centered at 314 and 375 K. The SFCC showed a surprising bimodal change in crystallization rates with temperature, which stretches down to 300 K. The earlier reported thermal activity at about 248 K was followed by SFCC and TMDSC and could be shown to be an irreversible endotherm and is not caused by a glass transition and rigid–amorphous fraction, as assumed earlier. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1364–1377, 2006
Three linear polyethylenes with branches at every 21st backbone atom have been analyzed by differential scanning calorimetry (DSC) and quasi-isothermal, temperature-modulated DSC. The branches were methyl (PE1M), dimethyl (PE2M), and ethyl groups (PE1E). Linear polyethylene (HDPE) and atactic poly-(octadecyl acrylate) (PODA) were also analyzed. All were compared to a random poly(ethylene-co-octene-1) of similar branch concentration (LLDPE) and poly(4,4′-phthaloimidobenzoyldoeicosyleneoxycarbonyl) (PEIM-22). The HDPE has the highest melting temperature and crystallinity with relatively large contributions of reversing melting when grown as folded-chain crystals. The precisely branched polyethylenes and copolymers have lower melting temperatures and heats of fusion. Of the branched samples, PE1M crystallizes more readily, followed by PE1E and PE2M, with PE2M showing cold crystallization. In contrast to paraffins of equal length which melt fully reversibly, the precisely designed, branched polymers melt largely irreversibly with small amounts of reversing melting, which is least for the best-grown crystals. The PE1M forms monoclinic, PE1E, pseudohexagonal, or triclinic crystals, and PE2M has a multitude of crystal structures.
The low‐temperature heat capacity of poly(butylene terephthalate) (PBT) was measured from 5 to 330 K. The experimental heat capacity of solid PBT, below the glass transition, was linked to its approximate group and skeletal vibrational spectrum. The 21 skeletal vibrations were estimated with a general Tarasov equation with the parameters Θ1 = 530 K and Θ2 = Θ3 = 55 K. The calculated and experimental heat capacities of solid PBT agreed within better than ±3% between 5 and 200 K. The newly calculated vibrational heat capacity of the solid from this study and the liquid heat capacity from the ATHAS Data Bank were applied as reference values for a quantitative thermal analysis of the apparent heat capacity of semicrystalline PBT between the glass and melting transitions as obtained by differential scanning calorimetry. From these results, the integral thermodynamic functions (enthalpy, entropy, and Gibbs function) of crystalline and amorphous PBT were calculated. Finally, the changes in the crystallinity with the temperature were analyzed. With the crystallinity, a baseline was constructed that separated the thermodynamic heat capacity from cold crystallization, reorganization, annealing, and melting effects contained in the apparent heat capacity. For semicrystalline PBT samples, the mobile‐amorphous and rigid‐amorphous fractions were estimated to complete the thermal analysis. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4401–4411, 2004
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.