Aims: To assess the protective effect of gum acacia (GA) on the performance of Lactobacillus paracasei NFBC 338 during spray-drying, subsequent storage and exposure of the culture to porcine gastric juice. Methods and Results: For these studies, Lact. paracasei NFBC 338 was grown in a mixture of reconstituted skim milk (10% w ⁄ v) and GA (10% w ⁄ v) to mid log phase and spray-dried at outlet temperatures between 95 and 105°C. On spray drying at the higher air outlet temperature of 100-105°C, the GA-treated culture displayed 10-fold greater survival than control cells. Probiotic lactobacilli in GA-containing powders also survived dramatically better than untreated cultures during storage at 4-30°C for 4 weeks. A 20-fold better survival of the probiotic culture in GA-containing powders was obtained during storage at 4°C while, at 15 and 30°C, greater than 1000-fold higher survival was obtained. Furthermore, the viability of probiotic lactobacilli in GA-containing powders was 100-fold higher when exposed to porcine gastric juice over 120 min compared with the control spray-dried culture. Conclusions: The data indicate that GA has applications in the protection of probiotic cultures during drying, storage and gastric transit. Significance and Impact of the Study: Gum acacia treatment for the manufacture of probiotic-containing powders should result in more efficient probiotic delivery to the host gastrointestinal tract.
Friesian-type dairy cows were milked with different machine settings to determine the effect of these settings on teat tissue reaction and on milking characteristics. Three teat-cup liner designs were used with varying upper barrel dimensions (wide-bore WB = 31.6 mm; narrow-bore NB = 21.0 mm; narrow-bore NB1 = 25.0 mm). These liners were tested with alternate and simultaneous pulsation patterns, pulsator ratios (60:40 and 67:33) and three system vacuum levels (40, 44 and 50 kPa). Teat tissue was measured using ultrasonography, before milking and directly after milking. The measurements recorded were teat canal length (TCL), teat diameter (TD), cistern diameter (CD) and teat wall thickness (TWT).Teat tissue changes were similar with a system vacuum level of either 50 kPa (mid-level) or 40 kPa (low-level). Widening the liner upper barrel bore dimension from 21.0 mm (P < 0.01) or 25.0 mm (P < 0.001) to 31.6 mm increased the magnitude of changes in TD and TWT after machine milking. Milk yield per cow was significantly (P < 0.05) higher and cluster-on time was reduced (P < 0.01) with the WB cluster as compared to the NB1 cluster. Minimum changes in teat tissue parameters were achieved with system vacuum level of 40 kPa and 50 kPa using NB and WB clusters, respectively. Similar changes in teat tissue and milk yield per cow were observed with alternate and simultaneous pulsation patterns. Widening pulsator ratio from 60:40 to 67:33 did not have negative effects on changes in teat tissue and had a positive effect on milk yield and milking time. Milk liner design had a bigger effect on teat tissue changes and milking characteristics than pulsation settings.
The objective of this study was to document temporal trends in bulk tank somatic cell count (SCC) and total bacterial counts (TBC) in Irish dairy herds during the years 1994 to 2004. Three milk processors participated in the study, providing data on 2,754,270 individual bulk tank SCC and 2,056,992 individual bulk tank TBC records from 9,113 herds. Somatic cell counts decreased during the years 1994 to 2000, followed by an annual increase thereafter of more than 2,000 cells/mL. A tendency existed for TBC to decrease over time. Across all years, bulk tank SCC were the lowest in April and highest in November; TBC were the lowest in May and highest in December. The significant seasonal pattern observed in herd SCC and TBC was an artifact of seasonal calving in Ireland. In general, herds selling more milk had lower bulk tank SCC and TBC. Herds having the highest SCC (i.e., > 450,000 cells/mL) and the lowest SCC (i.e., < or = 150,000 cells/mL) both contributed substantially to the mean SCC of the milk pool collected by the milk processors. Derived transition matrices showed that between adjacent years, herds had the greatest probability of remaining in the same annual mean SCC or TBC category.
A study was carried out to investigate the effect of six pre-milking teat preparation procedures on lowering the staphylococal, streptococcal and coliform microbial count on teat skin prior to cluster application. The teat preparations included 'Iodine', 'Chlorhexidine' teat foam, 'Washing and drying' with paper, 'No preparation', 'Chlorine' teat foam, and disinfectant 'Wipes'. Teat preparations were applied for five days to 10 cows for each treatment during two herd management periods (indoors and outdoors). Teats were swabbed on day four and five before teat preparation and repeated after teat preparation. The swabs were plated on three selective agars: Baird Parker (Staphylococcus spp.), Edwards (Streptococcus spp.), and MacConkey (coliform). Following incubation, microbial counts for each pathogen type were manually counted and assigned to one of six categories depending on the microbial counts measured. The results were analysed by logistic regression using SAS [28]. The main analysis was conducted on binary improvement scores for the swabbing outcomes. There were no differences for staphylococcal, streptococcal and coliform bacterial counts between treatments, measured 'before' teat preparation. Treatments containing 'Chlorhexidine' teat foam (OR = 4.46) and 'Wipes' (OR = 4.46) resulted in a significant reduction (P < 0.01) in the staphylococcal count on teats compared to 'Washing and drying' or 'No preparation'. 'Chlorine' teat foam (OR = 3.45) and 'Wipes' (3.45) had the highest probability (P < 0.01) of reducing streptococcal counts compared to 'Washing and drying' or 'No preparation'. There was no statistical difference between any of the disinfectant treatments applied in reducing coliforms. Thus, the use of some disinfectant products for pre-milking teat preparation can have beneficial effects on reducing the levels of staphylococcal and streptococcal pathogens on teat skin.
Research has shown that total bacterial count (TBC), which is the bacterial growth per ml of milk over a fixed period of time, can be decreased by good hygiene and farm management practices. The objective of the current study was to quantify the associations between herd management factors and bulk tank TBC in Irish spring calving, grass-based dairy herds. The relationship between bulk tank TBC and farm management and infrastructure was examined using data from 400 randomly selected Irish dairy farms where the basal diet was grazed grass. Herd management factors associated with bulk tank TBC were identified using linear models with herd annual total bacterial score (i.e., arithmetic mean of the natural logarithm of bulk tank TBC) included as the dependent variable. All herd management factors were individually analysed in a separate regression model, that included an adjustment for geographical location of the farm. A multiple stepwise regression model was subsequently developed. Median bulk tank TBC for the sample herds was 18,483 cells/ml ranging from 10,441 to 130,458 cells/ml. Results from the multivariate analysis indicated that the following management practices were associated with low TBC; use of heated water in the milking parlour; participation in a milk recording scheme; and tail clipping of cows at a frequency greater than once per year. Increased level of hygiene of the parlour and cubicles were also associated with lower TBC. Herd management factors associated with bulk tank TBC in Irish grazing herds were generally in agreement with most previous studies from confinement systems of milk production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.