Electron mobility, energy spectra and intrinsic carrier concentrations in the n-type Hg 0.32 Cd 0.68 Te / Hg 1-x Cd x Te / Hg 0.32 Cd 0.68 Te quantum well (QW) in semi-metallic state are numerically modeled. Energy spectra and wave functions were calculated in the framework of the 8-band k-p Hamiltonian. In our model, electron scattering on longitudinal optical phonons, charged impurities, and holes has been taken into account, and the mobility has been calculated by an iterative solution of the Boltzmann transport equation.Our results show that the increase of the electron concentration in the well enhances the screening of the 2D electron gas, decreases the hole concentration, and can ultimately lead to a high electron mobility at liquid nitrogen temperatures. The increase of the electron concentration in the QW could be achieved in situ by delta-doping of barriers or by applying the top-gate potential. Our modeling has shown that for low molar composition x the concentration of holes in the well is high in a wide range of electron concentrations; in this case, the purity of samples does not significantly influence the electron mobility.These results are important in the context of establishing optimal parameters for the fabrication of high-mobilityHg 1-x Cd x Te quantum wells able to operate at liquid nitrogen temperature and thus suitable for applications in terahertz detectors.
1.
Noise characteristics and resistance of semimetal-type mercury-cadmium-telluride quantum wells (QWs) at the liquid nitrogen temperature are studied numerically, and their dependence on the QW parameters and on the electron concentration is established. The QW band structure calculations are based on the full 8-band k.p Hamiltonian. The electron mobility is simulated by the direct iterative solution of the Boltzmann transport equation, which allows us to include correctly all the principal scattering mechanisms, elastic as well as inelastic.We find that the generation-recombination noise is strongly suppressed due to the very fast recombination processes in semimetal QWs. Hence, the thermal noise should be considered as a main THz sensitivity-limiting mechanism in those structures. Optimization of a semimetal Hg1-xCdxTe QW to make it an efficient THz bolometer channel should include the increase of electron concentration in the well and tuning the molar composition x close to the gapless regime.
Energy spectra, carrier concentration and electron mobility are numerically modeled in intrinsic and n-type semi-metal HgCdTe quantum wells at T = 77 K. We present results for the electron mobility calculated in a model incorporating electron scattering on longitudinal optical phonons, charged impurities, and holes, and including the 2D electron gas screening for all mentioned scattering mechanisms. Inelasticity of electron–phonon scattering is treated by means of a direct iterative solution of Boltzmann transport equation. Comparison with the experimental data at liquid helium temperature is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.