A Pb-based synthetic mineral referred to as psimythion (pl. psimythia) was manufactured in the Greek world at least since the 6th c BCE and routinely by the 4th c BCE. Theophrastus (On Stones, 56) describes its preparation from metallic Pb suspended over a fermenting liquid. Psimythion is considered the precursor of one of western art’s most prominent white pigments, i.e. lead white (basic lead carbonate or synthetic hydrocerussite). However, so far, and for that early period, published analyses of psimythia suggest that they consisted primarily of synthetic cerussite. In this paper, we set out to investigate how it was possible to manufacture pure cerussite, to the near exclusion of other phases. We examined the chemical and mineralogical composition (pXRF/XRD) of a small number of psimythion pellets found within ceramic pots (pyxis) from Athens and Boeotia (5th–4th c BCE) in the collection of the National Archaeological Museum (NAM), Athens. Analyses showed that the NAM pellets consisted primarily of Pb/cerussite with small amounts of Ca (some samples) and a host of metallic trace elements. We highlight the reference in the Theophrastus text to ‘spoiled wine’ (oxos), rather than ‘vinegar’, as has been previously assumed, the former including a strong biotic component. We carried out DNA sequencing of the pellets in an attempt to establish presence of microorganisms (Acetic Acid Bacteria). None was found. Subsequently, and as a working hypothesis, we propose a series of (biotic/abiotic) reactions which were likely to have taken place in the liquid and vapour phases and on the metal surface. The hypothesis aims to demonstrate that CO2 would be microbially induced and would increase, as a function of time, resulting in cerussite forming over and above hydrocerussite/other Pb-rich phases. Psimythion has for long been valued as a white pigment. What has perhaps been not adequately appreciated is the depth of empirical understanding from the part of psimythion manufacturers of the reactions between abiotic and biotic components within ‘oxos’/pot, as key drivers of minerals synthesis. Ultimately, psimythion manufacture may rest in understanding the nature of ‘oxos’, antiquity’s relatively little researched strongest acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.