p120 catenin regulates the activity of the Rho family guanosine triphosphatases (including RhoA and Rac1) in an adhesion-dependent manner. Through this action, p120 promotes a sessile cellular phenotype when associated with epithelial cadherin (E-cadherin) or a motile phenotype when associated with mesenchymal cadherins. In this study, we show that p120 also exerts significant and diametrically opposing effects on tumor cell growth depending on E-cadherin expression. Endogenous p120 acts to stabilize E-cadherin complexes and to actively promote the tumor-suppressive function of E-cadherin, potently inhibiting Ras activation. Upon E-cadherin loss during tumor progression, the negative regulation of Ras is relieved; under these conditions, endogenous p120 promotes transformed cell growth both in vitro and in vivo by activating a Rac1–mitogen-activated protein kinase signaling pathway normally activated by the adhesion of cells to the extracellular matrix. These data indicate that both E-cadherin and p120 are important regulators of tumor cell growth and imply roles for both proteins in chemoresistance and targeted therapeutics.
Rat basophilic leukemia (RBL-2H3) cells, like mast cells and basophils, carry monovalent membrane receptors with high affinity for IgE (Fc epsilon R). Cross-linking of these receptors provides the immunologic stimulus which initiates a series of biochemical events, culminating in secretion of inflammatory mediators. In an attempt to identify membrane components involved in the stimulus-secretion coupling of these cells, hybridomas were produced from splenocytes of mice immunized with intact RBL-2H3 cells. Here we report the production of a mAb (designated G63) that inhibits the Fc epsilon R-mediated secretion from RBL cells. At low degrees of Fc epsilon R aggregation, the mAb G63-induced inhibition may be complete, whereas at the maximum of secretion the inhibition is in the range of 30 to 40%. The relative degree of inhibition of secretion is dependent on the dose of mAb G63. Furthermore, inhibition requires the bivalency of G63, as the Fab fragments are inactive. The number of antigenic epitopes recognized by G63 per RBL-2H3 cell is 1.8 x 10(4) epitopes/cell, as determined by direct binding studies of 125I-labeled Fab fragments of G63. This number is 20 to 30 times smaller than that of Fc epsilon R on the same cells. The membrane component to which G63 binds has been identified by immunoprecipitation as a glycoprotein with an apparent Mr of 58 to 70 kDa. All of these results, and the fact that no competition for binding to RBL cells between mAb G63 and IgE can be resolved, indicate that mAb G63 binds to a membrane component which is distinct from the Fc epsilon R. mAb G63 suppresses the Fc epsilon R-mediated rise in cytoplasmic concentration of free Ca2+ ions, known to be one of the biochemical signals involved in the stimulus-secretion coupling in RBL-2H3 cells. G63 does not affect, however, the degranulation induced by the Ca2+ ionophore A23187. Therefore, mAb G63 probably exerts its inhibitory effect on a step preceding the rise in cytoplasmic free Ca2+. Thus, mAb G63 defines a previously unidentified membrane component that is involved in one of the early steps of the RBL-2H3 activation mediated by their Fc epsilon R.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.