Relevance: Mitochondrial dysfunction and systemic inflammation are believed to play pivotal role in the pathogenesis of polycystic ovary syndrome (PCOS) and related complications of metabolic disorders in adult patients. Though such researches are limited or almost absent in adolescents. The aim of the study is to evaluate the impact of mitochondrial dysfunction and systemic inflammation on PCOS pathogenesis during adolescence with regard to body mass index and insulin resistance. Design: a case-control study. Methods: The study included 95 adolescent girls (15 to 17 years old inclusive) diagnosed with PCOS based on the Rotterdam criteria. The control group consisted of 30 healthy girls of the same age with a regular menstrual cycle. All participants were subjected to a full clinical and instrumental examination, as well as an assessment of the levels of leptin, C-reactive protein (CRP), and malondialdehyde (MDA) as oxidative stress marker. Serum levels of IL-6, IL-10, IL-18, TNF-α, and plasma concentrations of macrophage migration inhibitory factor (MIF), sFas, and sFasL were determined. Patients with PCOS were divided into groups according to the presence of metabolic disorders (MD) (impaired glucose tolerance and/or over insulin resistance) and normal weight or excessive weight (NW or OW). Results: Patients with PCOS of NW in the absence of metabolic disorders (MD−/NW) had a lower concentration of MDA and a higher level of IL-10 compared to healthy girls (p < 0.05). The group (MD−/NW) was characterized with lower levels of CRP, leptin, MDA, and higher levels of sFasL, when compared to OW patients with PCOS in the absence of metabolic disorders (MD−/OW) (p < 0.05). Overweight adolescent girls with PCOS and metabolic disorders (MD+/OW) showed higher CRP, leptin, and a two-fold increase in IL-6 and IL-18 concentrations compared to the control group of healthy girls (p < 0.05 for all parameters). The group (MD+/OW) was also characterized with higher levels of CRP, leptin, MDA, IL-18, MIF (p < 0.05), when compared to overweight patients with PCOS in the absence of metabolic disorders (MD−/NW). In comparison with the MD−/OW group, the obese insulin resistant girls with PCOS (MD+/OW) had a highera level of IL-18 (p < 0.05). Moreover, the MD+/OW girls demonstrated a significant increase in CRP, MDA and IL-18 levels when compared to the MD+/NW group (p < 0.05). OW girls with PCOS without MD (MD−/OW) had lower concentrations of sFasL compared to healthy girls (p < 0.05), and higher levels of MDA compared to MD+/NW (p < 0.05). Adolescent girls of NW with PCOS and with MD (MD+/NW) had lower levels of MDA compared to the control group of healthy girls (p < 0.05). These data are confirmed by a correlation analysis and two-factor ANOVA test. Conclusions: Lean girls with PCOS demonstrate the protective mechanism of decrease in oxidative stress mediated by the activation of antioxidant defense, reduction of lipid peroxidation and systemic inflammation. Excessive weight and metabolic disorders in adolescents with PCOS are the most significant factors in reducing the capacity of antioxidant systems, activation of oxidative stress, mitochondrial dysfunction, and systemic inflammation.
Relevance: The clinical picture of polycystic ovary syndrome (PCOS) is extremely polymorphic, especially in adolescence. At the same time, the diagnostic criteria of PCOS in adolescence are still under discussion, and the hormonal parameters, including anti-Mullerian hormone range and hyperandrogenism, are not determined. The aim of the present study was to characterize the pivotal clinical and hormonal features of PCOS in adolescents and to establish the age-specific thresholds of the most essential hormonal parameters. Design: A case-control study. Methods: The study included 130 girls with PCOS according to the complete Rotterdam criteria, aged 15 to 17 years. The control group consisted of 30 healthy girls with a regular menstrual cycle of the same age. A complete clinical and laboratory examination, hormonal assays, and ultrasound of the pelvic organs were performed. The serums anti-Mullerian hormone (AMH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), LH/FSH, prolactin, estradiol, 17α-OH progesterone (17α-OHP), androstenedione, testosterone (T), dehydroepiandrosterone sulfate (DHEAS), sex hormone-binding globulin (SHBG), leptin, and free androgen index (FAI) were analyzed. The diagnostic accuracy of AMH, FAI, LH/FSH, T, and androstenedione levels in predicting PCOS in adolescents was established using a logistic regression model and calculating area under the receiver operator characteristic (ROC) curve (AUC). Results: The serum levels of LH (9.0 (5.4–13.8) vs. 3.7 (2.5–4.7) IU/L; p < 0.0001), LH/FSH (1.6 (1.0–2.3) vs. 0.7 (0.5–1.1); p < 0.0001), 17α–OHP (4.1 (3.2–5.1) vs. 3.4 (2.7–3.8) nmol/L; p = 0.0071), cortisol (464.0 ± 147.6 vs. 284.0 ± 129.7 nmol/L; p < 0.0001), prolactin (266.0 (175.0–405.0) vs. 189.0 (142.0–269.0) mIU/L; p = 0.0141), T (1.9 (1.2–2.5) vs. 0.8 (0.7–1.1) nmol/L; p < 0.0001), androstenedione (15.8 (11.6–23.2) vs. 8.3 (6.5–10.8) ng/mL; p < 0.0001), AMH (9.5 (7.5–14.9) vs. 5.8 (3.8–6.9) ng/mL; p < 0.0001), FAI (5.5 (2.8–7.0) vs. 1.6 (1.1–2.3); p < 0.0001), SHBG (37.0 (24.7–55.5) vs. 52.9 (39.0–67.6) nmol/L; p = 0.0136), DHEAS (6.8 ± 3.2 vs. 5.1 ± 1.5 μmol/L; p = 0.0039), and leptin (38.7 ± 27.1 vs. 23.7 ± 14.0 ng/mL; p = 0.0178) were significantly altered in the PCOS patients compared to the controls. Multivariate analysis of all studied hormonal and instrumental parameters of PCOS in adolescents revealed as the most essential: AMH level > 7.20 ng/mL, FAI > 2.75, androstenedione > 11.45 ng/mL, total T > 1.15 nmol/L, LH/FSH ratio > 1.23, and the volume of each ovary > 10.70 cm3 (for each criterion sensitivity ≥ 75.0–93.0%, specificity ≥ 83.0–93.0%). The diagnostic accuracy of PCOS determination was 90.2–91.6% with the combined use of either four detected indexes, which was significantly higher than the use of each index separately. The accuracy of PCOS diagnostics reached 92% using AMH and leptin concentrations when the value of the logistic regression function [85.73 − (1.73 × AMH) − (0.12 × Leptin)] was less than 70.72. Conclusions: The results of the study estimate the threshold for AMH, FAI, androstenedione, testosterone, LH/FSH, and ovarian volume, which could be suggested for use in the PCOS diagnostics in adolescents with a high sensitivity and specificity. Moreover, the combination of either four determined indexes improved the diagnostic accuracy for the PCOS detection in adolescents.
Endometriosis and cancer have much in common, notably their burgeoning of cells in hypoxic milieus, their invasiveness, and their capacity to trigger remodeling, vascularization, and innervation of other tissues. An important role in these processes is played by permissive microenvironments inhabited by a variety of stromal and immune cells, including macrophages. Remarkable phenotypical plasticity of macrophages makes them a promising therapeutic target; some key issues are the range of macrophage phenotypes characteristic of a particular pathology and the possible manners of its modulation. In both endometriosis and cancer, macrophages guard the lesions from immune surveillance while promoting pathological cell growth, invasion, and metastasis. This review article focuses on a comparative analysis of macrophage behaviors in endometriosis and cancer. We also highlight recent reports on the experimental modulation of macrophage phenotypes in preclinical models of endometriosis and cancer.
Background: The early diagnosis of endometriosis in adolescents is not developed. Objective: We aim to conduct clinical, imaging, laparoscopic and histological analyses of peritoneal endometriosis (PE) in adolescents in order to improve early diagnosis. Methods: In total, 134 girls (from menarche to 17 years old) were included in a case–control study: 90 with laparoscopically (LS) confirmed PE, 44 healthy controls underwent full examination and LS was analyzed in the PE group. Results: Patients with PE were characterized with heredity for endometriosis, persistent dysmenorrhea, decreased daily activity, gastrointestinal symptoms, higher LH, estradiol, prolactin and Ca-125 (<0.05 for each). Ultrasound detected PE in 3.3% and MRI in 78.9%. The most essential MRI signs are as follows: hypointense foci, the heterogeneity of the pelvic tissue (paraovarian, parametrial and rectouterine pouch) and sacro-uterine ligaments lesions (<0.05 for each). Adolescents with PE mostly exhibit initial rASRM stages. Red implants correlated with the rASRM score, and sheer implants correlated with pain (VAS score) (<0.05). In 32.2%, foci consisted of fibrous, adipose and muscle tissue; black lesions were more likely to be histologically verified (0.001). Conclusion: Adolescents exhibit mostly initial PE stages, which are associated with greater pain. Persistent dysmenorrhea and detected MRI parameters predict the laparoscopic confirmation of initial PE in adolescents in 84.3% (OR 15.4; <0.01), justifying the early surgical diagnostics and shortening the time delay and suffering of the young patients.
Restoration of the physiology of the vulvar epithelium in girls with dermatosis of various genesisThe article provides literature data on variants of dermatoses of the vulva skin and clinical examples of eliminating manifestations of itchy dermatosis, inflammatory and allergic reactions, as well as trophic damage to the epithelium of the external genitalia in girls and girls using a combined cosmetic for external use with sodium hyaluronate and a natural phytocomplex with antioxidant, estrogen-like, antiseptic and regenerating effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.