The glucocorticoid receptor and the mineralocorticoid receptor are hormone-dependent transcription factors. They regulate the excitability of rat hippocampus CA1 neurons in a coordinated fashion. We studied the spatial distribution of these transcription factors in nuclei of CA1 neurons by dual labeling immunocytochemistry and confocal microscopy, combined with novel image restoration and image analysis techniques. We found that both receptors are concentrated in about one thousand clusters within the nucleus. Some clusters contain either mineralocorticoid receptors or glucocorticoid receptors, but a significant number of clusters contains both receptors. These results indicate that the two receptor types are targeted to specific compartments in the nucleus. The coordinated action of the glucocorticoid and mineralocorticoid receptor on gene expression may be established in a specific set of nuclear domains that contain both receptors.
The cell nucleus is highly organized. Many nuclear functions are localized in discrete domains, suggesting that compartmentalization is an important aspect of the regulation and coordination of nuclear functions. We investigated the subnuclear distribution of the glucocorticoid receptor, a hormone-dependent transcription factor. By immunofluorescent labeling and confocal microscopy we found that after stimulation with the agonist dexamethasone the glucocorticoid receptor is concentrated in 1,000-2,000 clusters in the nucleoplasm. This distribution was observed in several cell types and with three different antibodies against the glucocorticoid receptor. A similar subnuclear distribution of glucocorticoid receptors was found after treatment of cells with the antagonist RU486, suggesting that the association of the glucocorticoid receptor in clusters does not require transformation of the receptor to a state that is able to activate transcription. By dual labeling we found that most dexamethasone-induced receptor clusters do not colocalize with sites of pre-mRNA synthesis. We also show that RNA polymerase II is localized in a large number of clusters in the nucleus. Glucocorticoid receptor clusters did not significantly colocalize with these RNA polymerase II clusters or with domains containing the splicing factor SC-35. Taken together, these results suggest that most clustered glucocorticoid receptor molecules are not directly involved in activation of transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.